Based on the main characteristics of the tectonic -magmatic evolution of region and Tanlu fault zone,we have discussed ore-bearing magmatic rocks petrochemistry,strontium and lead isotope,and the source of ore-forming...Based on the main characteristics of the tectonic -magmatic evolution of region and Tanlu fault zone,we have discussed ore-bearing magmatic rocks petrochemistry,strontium and lead isotope,and the source of ore-forming materials in Yinan skarn deposit in this paper.The petrochemical features show that the ore-bearing magmatic rocks are calc-alkaline rocks of sub-alkaline series formed during展开更多
Geological setting\;Jinding superlarge Pb\|Zn deposit lies in the Lanping basin between the Lancangjiang fracture zone and the Jinshajiang\|Ailaoshan fracture zone. The Lanping basin is a Meso\|Cenozoic rifting basin ...Geological setting\;Jinding superlarge Pb\|Zn deposit lies in the Lanping basin between the Lancangjiang fracture zone and the Jinshajiang\|Ailaoshan fracture zone. The Lanping basin is a Meso\|Cenozoic rifting basin whose basement consists of the Paleozoic strata. Mesozoic paralic and continental sediments with a thickness of about 20000m deposited in the basin. In the Paleocene, gypsum\|salt\|bearing strata with a thickness of more than 1000m accumulated. In the Cenozoic, collision of the Indian plate with the Eurasian plate resulted in strong folding and napping and subsequent extensions in the Oligocene and Pliocene. The extensions were responsible for alkaline magmatic intrusion in the centre and alkaline magmatic extrusion in the east.Faulting is well developed. N\|S\|trending Bijiang fault with a length of 120km links with the Jinshajiang fracture zone in the north and with the Lancangjiang fracture zone in the south, controlling on the Cenozoic Lanping rifting basin and acting as passage\|way for ore fluids.展开更多
The objective of the study was to investigate the effects of dietary energy levels and sources on the blood metabolites,hormone secretion and the composition of follicular fluid in gilts.Fifty-four gilts with initial ...The objective of the study was to investigate the effects of dietary energy levels and sources on the blood metabolites,hormone secretion and the composition of follicular fluid in gilts.Fifty-four gilts with initial body weight of(59±4.2) kg were randomly allotted to six treatments.Treatments were low, normal,and high energy feeding levels,which were 87.5%,100%and 112.5%of recommendatory energy requirements by NRC(1998),respectively,and dietary energy sources(starch or fat).Blood samples and follicular fluids were collected on D18 and D19 of the second estrous cycle.The results showed that plasma concentrations of triglycerides and total cholesterol were higher in the fat group than that in the starch group(P【0.05),but those of glucose were similar between the two energy sources(P】0.05);dietary energy level exerted no effect on blood metabolites concentration(P】0.05).Gilts fed the high energy diet had a higher area under curve of plasma insulin(Insulin AUC),insulin-like growth factor-Ⅰ(IGF-Ⅰ) and leptin than did gilts fed the lower energy diet(P【0.05),but there was no significant difference between fat versus starch(P】0.05).Luteinizing hormone(LH) pulses were higher in gilts fed high energy rather than that in low energy diets(P】0.05),plasma concentration of estradiol(E<sub>2</sub>) was higher in the fat group than that in the starch group(P【0.05).The number of large follicles(diameter≥4 mm) and concentrations of IGF-Ⅰand E<sub>2</sub> in follicular fluid were increasing significant as the level of energy increased(P【0.05),but the numbers of large follicles and follicular fluid composition were not affected by the source of dietary energy(P】0.05).The results indicate that gilts fed high energy diets had elevated plasma concentrations of metabolic hormones,IGF-Ⅰand LH secretion,and increased follicular fluid concentrations of IGF-Ⅰ,E<sub>2</sub> and numbers of large follicles;gilts fed the dietary fat had a higher plasma concentration of cholesterol and E<sub>2</sub>.展开更多
Effects of heat and mass transfer in the flow of Burgers fluid over an inclined sheet are discussed. Problems formulation and relevant analysis are given in the presence of thermal radiation and non-uniform heat sourc...Effects of heat and mass transfer in the flow of Burgers fluid over an inclined sheet are discussed. Problems formulation and relevant analysis are given in the presence of thermal radiation and non-uniform heat source/sink. Thermal conductivity is taken temperature dependent. The nonlinear partial differential equations are simplified using boundary layer approximations. The resultant nonlinear ordinary differential equations are solved for the series solutions. The convergence of series solutions is obtained by plotting theη-curves for the velocity, temperature and concentration fields. Results of this work describe the role of different physical parameters involved in the problem. The Deborah numbers corresponding to relaxation time(β1 and β2) and angle of inclination(α) decrease the fluid velocity and concentration field. Concentration field decays as Deborah numbers corresponding to retardation time(β3) and mixed convection parameter(G) increase. Large values of heat generation/absorption parameters A/B, and the temperature distribution across the boundary layer increase. Numerical values of local Nusselt number,-θ′(0), and local Sherwood number,-f′(0), are computed and analyzed. It is found that θ′(0) increases with an increase in β3.展开更多
The types, composition and physico-chemical conditions of primary fluid inclusions were researched. The results show that the primary fluid inclusions contain vapor and liquid phase type (Type I), daughter mineral-b...The types, composition and physico-chemical conditions of primary fluid inclusions were researched. The results show that the primary fluid inclusions contain vapor and liquid phase type (Type I), daughter mineral-bearing type (Type II) and pure liquid phase type (Type III). The compositions of vapor are mainly H20 and CO2 with a tiny amounts of CH4 and H2; the liquid phase mainly contains Mg2+, Ca2+, Na+, K+, CI- and SO]-, and w(Na+)/w(K+)〉l; the homogenization temperatures of the primary fluid inclusions can be divided into 190-250 ℃, 250-340 ℃ and 360-420 ℃, corresponding to the salinities of 4%-9%, 9%-14%, and 14%-20.43% (NaC1 equivalent mass fraction), respectively. The mineralization process can be divided into three episodes: the silicatization stage, the quartz-sulfide stage, and the carbonatization stage, and all of them are associated with the ore-forming hydrothermal fluid activity. The origin of the hydrothermal fluid is from magrnatic water mainly, and later it mixes with the groundwater and meteoric water, which lead to the decrease of temperature and salinity. The decrease of salinity, temperature and pressure are the main causes of the metallogenic elements unloading and enriching in the favorable position.展开更多
For the release of hazardous contaminant indoors, source identification is critical for developing effective response measures. A method which can quickly and accurately identify the position, emission rate, and relea...For the release of hazardous contaminant indoors, source identification is critical for developing effective response measures. A method which can quickly and accurately identify the position, emission rate, and release time of a single constant contaminant source by using real sensors was presented. The method was numerically demonstrated and validated by a case study of contaminant release in a three-dimensional office. The effects of the measurement errors and total sampling period of sensor on the performance of source identification were thoroughly studied. The results indicate that the adverse effects of the measurement errors can be mitigated by extending the total sampling period. For reaching a desirable accuracy of source identification, the total sampling period should exceed a certain threshold, which can be determined by repeatedly running the identification method tmtil the results tend to be stable. The method presented can contribute to develop an onsite source identification system for protecting occupants from indoor releases.展开更多
文摘Based on the main characteristics of the tectonic -magmatic evolution of region and Tanlu fault zone,we have discussed ore-bearing magmatic rocks petrochemistry,strontium and lead isotope,and the source of ore-forming materials in Yinan skarn deposit in this paper.The petrochemical features show that the ore-bearing magmatic rocks are calc-alkaline rocks of sub-alkaline series formed during
基金theNationalClimbingProgram(95 Pre .393 1 2 )andMLMRStrategicKeyProgram (95 0 110 3)
文摘Geological setting\;Jinding superlarge Pb\|Zn deposit lies in the Lanping basin between the Lancangjiang fracture zone and the Jinshajiang\|Ailaoshan fracture zone. The Lanping basin is a Meso\|Cenozoic rifting basin whose basement consists of the Paleozoic strata. Mesozoic paralic and continental sediments with a thickness of about 20000m deposited in the basin. In the Paleocene, gypsum\|salt\|bearing strata with a thickness of more than 1000m accumulated. In the Cenozoic, collision of the Indian plate with the Eurasian plate resulted in strong folding and napping and subsequent extensions in the Oligocene and Pliocene. The extensions were responsible for alkaline magmatic intrusion in the centre and alkaline magmatic extrusion in the east.Faulting is well developed. N\|S\|trending Bijiang fault with a length of 120km links with the Jinshajiang fracture zone in the north and with the Lancangjiang fracture zone in the south, controlling on the Cenozoic Lanping rifting basin and acting as passage\|way for ore fluids.
基金supported by Program for Changjiang Scholars and Innovative Research Team in University (IRT0555)National Natural Science Foundation (30471257) of China
文摘The objective of the study was to investigate the effects of dietary energy levels and sources on the blood metabolites,hormone secretion and the composition of follicular fluid in gilts.Fifty-four gilts with initial body weight of(59±4.2) kg were randomly allotted to six treatments.Treatments were low, normal,and high energy feeding levels,which were 87.5%,100%and 112.5%of recommendatory energy requirements by NRC(1998),respectively,and dietary energy sources(starch or fat).Blood samples and follicular fluids were collected on D18 and D19 of the second estrous cycle.The results showed that plasma concentrations of triglycerides and total cholesterol were higher in the fat group than that in the starch group(P【0.05),but those of glucose were similar between the two energy sources(P】0.05);dietary energy level exerted no effect on blood metabolites concentration(P】0.05).Gilts fed the high energy diet had a higher area under curve of plasma insulin(Insulin AUC),insulin-like growth factor-Ⅰ(IGF-Ⅰ) and leptin than did gilts fed the lower energy diet(P【0.05),but there was no significant difference between fat versus starch(P】0.05).Luteinizing hormone(LH) pulses were higher in gilts fed high energy rather than that in low energy diets(P】0.05),plasma concentration of estradiol(E<sub>2</sub>) was higher in the fat group than that in the starch group(P【0.05).The number of large follicles(diameter≥4 mm) and concentrations of IGF-Ⅰand E<sub>2</sub> in follicular fluid were increasing significant as the level of energy increased(P【0.05),but the numbers of large follicles and follicular fluid composition were not affected by the source of dietary energy(P】0.05).The results indicate that gilts fed high energy diets had elevated plasma concentrations of metabolic hormones,IGF-Ⅰand LH secretion,and increased follicular fluid concentrations of IGF-Ⅰ,E<sub>2</sub> and numbers of large follicles;gilts fed the dietary fat had a higher plasma concentration of cholesterol and E<sub>2</sub>.
文摘Effects of heat and mass transfer in the flow of Burgers fluid over an inclined sheet are discussed. Problems formulation and relevant analysis are given in the presence of thermal radiation and non-uniform heat source/sink. Thermal conductivity is taken temperature dependent. The nonlinear partial differential equations are simplified using boundary layer approximations. The resultant nonlinear ordinary differential equations are solved for the series solutions. The convergence of series solutions is obtained by plotting theη-curves for the velocity, temperature and concentration fields. Results of this work describe the role of different physical parameters involved in the problem. The Deborah numbers corresponding to relaxation time(β1 and β2) and angle of inclination(α) decrease the fluid velocity and concentration field. Concentration field decays as Deborah numbers corresponding to retardation time(β3) and mixed convection parameter(G) increase. Large values of heat generation/absorption parameters A/B, and the temperature distribution across the boundary layer increase. Numerical values of local Nusselt number,-θ′(0), and local Sherwood number,-f′(0), are computed and analyzed. It is found that θ′(0) increases with an increase in β3.
基金Project(200911007-04) supported by the Special Funds for Scientific Research of Land and Natural Resources, ChinaProject (2007CB411405) supported by the National Basic Research Program of ChinaProject(20109901) supported by the National Crisis Office of China
文摘The types, composition and physico-chemical conditions of primary fluid inclusions were researched. The results show that the primary fluid inclusions contain vapor and liquid phase type (Type I), daughter mineral-bearing type (Type II) and pure liquid phase type (Type III). The compositions of vapor are mainly H20 and CO2 with a tiny amounts of CH4 and H2; the liquid phase mainly contains Mg2+, Ca2+, Na+, K+, CI- and SO]-, and w(Na+)/w(K+)〉l; the homogenization temperatures of the primary fluid inclusions can be divided into 190-250 ℃, 250-340 ℃ and 360-420 ℃, corresponding to the salinities of 4%-9%, 9%-14%, and 14%-20.43% (NaC1 equivalent mass fraction), respectively. The mineralization process can be divided into three episodes: the silicatization stage, the quartz-sulfide stage, and the carbonatization stage, and all of them are associated with the ore-forming hydrothermal fluid activity. The origin of the hydrothermal fluid is from magrnatic water mainly, and later it mixes with the groundwater and meteoric water, which lead to the decrease of temperature and salinity. The decrease of salinity, temperature and pressure are the main causes of the metallogenic elements unloading and enriching in the favorable position.
基金Project(50908128) supported by the National Natural Science Foundation of ChinaProject(51125030) supported by the National Science Foundation for Distinguished Young Scholars in China
文摘For the release of hazardous contaminant indoors, source identification is critical for developing effective response measures. A method which can quickly and accurately identify the position, emission rate, and release time of a single constant contaminant source by using real sensors was presented. The method was numerically demonstrated and validated by a case study of contaminant release in a three-dimensional office. The effects of the measurement errors and total sampling period of sensor on the performance of source identification were thoroughly studied. The results indicate that the adverse effects of the measurement errors can be mitigated by extending the total sampling period. For reaching a desirable accuracy of source identification, the total sampling period should exceed a certain threshold, which can be determined by repeatedly running the identification method tmtil the results tend to be stable. The method presented can contribute to develop an onsite source identification system for protecting occupants from indoor releases.