The origin of the marine oils in the Tarim Basin has long been a disputed topic. A total of 58 DST (drill stem test) crude oil and 8 rock samples were investigated using a comprehensive geochemical method to charact...The origin of the marine oils in the Tarim Basin has long been a disputed topic. A total of 58 DST (drill stem test) crude oil and 8 rock samples were investigated using a comprehensive geochemical method to characterize and identify the origin of the Ordovician oils in the Tazhong Uplift, Tarim Basin, northwest China. Detailed oil–oil and oil–source rock correlations show that the majority of the oils have typical biomarker characteristics of the Middle-Upper Ordovician (O2+3) source rock and the related crude oil. These characteristics include a distinct "V-shaped" relative abundance of C27, C28 and C29 regular steranes, low abundance of dinosterane, 24-norcholestanes, triaromatic dinosteroids and gammacerane. Only a few oils display typical biomarker characteristics indicating the Cambrian–Lower Ordovician (∈-O1) genetic affinity, such as linear or anti "L" shape distribution of C27, C28 and C29 regular sterane, with relatively high concentrations of dinosterane, 24-norcholestanes, triaromatic dinosteroids and gammacerane. It appears that most of the Ordovician oils in the Tazhong Uplift were derived from the O2+3 intervals, as suggested by previous studies. However, the compound specific n-alkane stable carbon isotope data indicate that the Ordovician oils are mixtures from both the ∈-O1 and O2+3 source rocks rather than from the O2+3 strata alone. It was calculated that the proportion of the∈-O1 genetic affinity oils mixed is about 10.8%-74.1%, with an increasing trend with increasing burial depth. This new oil-mixing model is critical for understanding hydrocarbon generation and accumulation mechanisms in the region, and may have important implications for further hydrocarbon exploration in the Tarim Basin.展开更多
Through oil-oil and oil-source correlation and combined with the comprehensive study of hydrocarbon generation and accumulation history, the oil sources of typical reservoirs of different geologic periods in the hinte...Through oil-oil and oil-source correlation and combined with the comprehensive study of hydrocarbon generation and accumulation history, the oil sources of typical reservoirs of different geologic periods in the hinterland of the Junggar basin are revealed. It is concluded that the crude oils in the study area can be classified into four types: The oil in the area of well Zhuang-1 and well Sha-1 belongs to type-I, which was generated from Cretaceous to Paleogene (K-E) and its source rocks are distributed in the Fengcheng formation of the Permian in the western depression to the well Pen-1. The oil in the area of well Yong-6 (K1 tg) belongs to type-Ⅱ, which was generated from Cretaceous to Paleogene and its source rocks are distributed in the Wuerhe formation of the Permian in the Changji depression. The oil in the area of well Yong-6 (J2x) belongs to type-III, which was generated at the end of the Paleogene and its source rocks are distributed in the coal measures of the Jurassic in the Changji depression. The oil of well Zheng-1 and well Yong-1 belongs to type-IV, which was generated in the Paleogene, and its source rocks are distributed in the Wuerhe formation of the Lower Permian and coal measures of the Jurassic. It is indicated that the hydrocarbon accumulation history in the study area was controlled by the tectonic evolution history of the Che-Mo palaeohigh and the hydrocarbon generation history of well Pen-1 in the western depression and Changji depression.展开更多
Based on correlation between geochemical characteristics of Sinian and Cambrian source rocks and discovered gas reservoirs,paleoand the analysis on geological conditions of reservoir formation,the sources of natural g...Based on correlation between geochemical characteristics of Sinian and Cambrian source rocks and discovered gas reservoirs,paleoand the analysis on geological conditions of reservoir formation,the sources of natural gas in the Sinian of Sichuan Basin have been discussed to sort out the contribution of Sinian source rocks to the gas reservoirs and effectiveness of Sinian primary gas-bearing system.Through the analysis of natural gas composition,carbon and hydrogen isotopes and effectiveness of Sinian accumulation assemblages,it is concluded that:(1)The natural gas derived from the Sinian source rock is characterized by low ethane content,heavy ethane carbon isotope and light methane hydrogen isotope,and obviously different from the gas generated by the Cambrian source rock.(2)The gas reservoirs discovered in Sinian Dengying Formation are sourced by Sinian and Cambrian source rocks,and the Sinian source rock contributes different proportions to the gas in the 4th member and the 2nd member of the Dengying Formation,specifically,39%and 55%to the 4th member in marginal zone and intra-platform,54%and 68%to the 2th member in the marginal zone and intra-platform respectively.(3)The effectiveness of the Sinian primary gas-bearing system depends on the gas generating effectiveness of the source kitchen,reservoir and combination of gas accumulation elements.For high-over mature marine source rocks at the Ro of less than 3.5%,besides gas generated from the thermal cracking of liquid hydrocarbon,the kerogen still has some gas generation potential by thermal degradation.In addition,the Sinian microbial dolomite still preserves relatively good-quality reservoirs despite large burial depths,which match well with other basic conditions for gas accumulation in central Sichuan paleo-uplift,increasing the possibility of Sinian primary gas-bearing system.The research results confirm that the Sinian primary gas-bearing system is likely to form large-scale accumulation.展开更多
Oils in Jinghu sag are abundant with high content of polar compounds and have a low ratio of saturate to aromatic hydrocarbons and a high ratio of resin to asphaltene. The gross composition of oils in the Jinghu sag s...Oils in Jinghu sag are abundant with high content of polar compounds and have a low ratio of saturate to aromatic hydrocarbons and a high ratio of resin to asphaltene. The gross composition of oils in the Jinghu sag suggests typical immature to low mature characteristics. Some compounds with low thermal stability were identified. Light hydrocarbons, a carbon preference index, an odd even index, n-alkane and hopane maturity parameters show mature features and little differences in the maturity level among oils. Sterane isomerization parameters indicate an immature to low mature status of oil. Transfer of the sedimentary center during sedimentation has led to different thermal histories among subsags and thus generated oils with different maturities. On the basis of source analyses, four migration and accumulation patterns with different maturity can be classified. Combined with available information on mergers of source, reservoir and long distance oil lateral migration, mixing conditions were present in the Jinghu sag. Experimental results indicate that maturity variations are caused by mixtures of hydrocarbons with different maturity.展开更多
Commercial oil flow has been obtained from the sandstone reservoir of the Lower Silurian Kelpintag Formation in the Well Shun-9 prospect area.In the present studies,10 Silurian oil and oil sand samples from six wells ...Commercial oil flow has been obtained from the sandstone reservoir of the Lower Silurian Kelpintag Formation in the Well Shun-9 prospect area.In the present studies,10 Silurian oil and oil sand samples from six wells in the area were analyzed for their molecular and carbon isotopic compositions,oil alteration(biodegradation),oil source rock correlation and oil reservoir filling direction.All the Silurian oils and oil sands are characterized by low Pr/Ph and C21/C23 tricyclic terpane(〈1.0) ratios,"V"-pattern C27-C29 steranes distribution,low C28-sterane and triaromatic dinosterane abundances and light δ13C values,which can be correlated well with the carbonate source rock of the O3 l Lianglitage Formation.Different oil biodegradation levels have also been confirmed for the different oils/oil sands intervals.With the S1k2 seal,oils and oil sands from the S1k1 interval of the Kelpintag Formation have only suffered light biodegradation as confirmed by the presence of "UCM" and absence of 25-norhopanes,whereas the S1k3-1 oil sands were heavily biodegraded(proved by the presence of 25-norhopanes) due to the lack of the S1k2 seal,which suggests a significant role of the S1k2 seal in the protection of the Silurian oil reservoir.Based on the Ts/(Ts+Tm) and 4-/1-MDBT ratios as reservoir filling tracers,a general oil filling direction from NW to SE has been also estimated for the Silurian oil reservoir in the Well Shun-9 prospect area.展开更多
基金This study is funded by the Natural Science Research Council of China (973 State Key Research and Development Program 2006CB202308)National Natural Science Foundation of China (Grant No.40973031)
文摘The origin of the marine oils in the Tarim Basin has long been a disputed topic. A total of 58 DST (drill stem test) crude oil and 8 rock samples were investigated using a comprehensive geochemical method to characterize and identify the origin of the Ordovician oils in the Tazhong Uplift, Tarim Basin, northwest China. Detailed oil–oil and oil–source rock correlations show that the majority of the oils have typical biomarker characteristics of the Middle-Upper Ordovician (O2+3) source rock and the related crude oil. These characteristics include a distinct "V-shaped" relative abundance of C27, C28 and C29 regular steranes, low abundance of dinosterane, 24-norcholestanes, triaromatic dinosteroids and gammacerane. Only a few oils display typical biomarker characteristics indicating the Cambrian–Lower Ordovician (∈-O1) genetic affinity, such as linear or anti "L" shape distribution of C27, C28 and C29 regular sterane, with relatively high concentrations of dinosterane, 24-norcholestanes, triaromatic dinosteroids and gammacerane. It appears that most of the Ordovician oils in the Tazhong Uplift were derived from the O2+3 intervals, as suggested by previous studies. However, the compound specific n-alkane stable carbon isotope data indicate that the Ordovician oils are mixtures from both the ∈-O1 and O2+3 source rocks rather than from the O2+3 strata alone. It was calculated that the proportion of the∈-O1 genetic affinity oils mixed is about 10.8%-74.1%, with an increasing trend with increasing burial depth. This new oil-mixing model is critical for understanding hydrocarbon generation and accumulation mechanisms in the region, and may have important implications for further hydrocarbon exploration in the Tarim Basin.
文摘Through oil-oil and oil-source correlation and combined with the comprehensive study of hydrocarbon generation and accumulation history, the oil sources of typical reservoirs of different geologic periods in the hinterland of the Junggar basin are revealed. It is concluded that the crude oils in the study area can be classified into four types: The oil in the area of well Zhuang-1 and well Sha-1 belongs to type-I, which was generated from Cretaceous to Paleogene (K-E) and its source rocks are distributed in the Fengcheng formation of the Permian in the western depression to the well Pen-1. The oil in the area of well Yong-6 (K1 tg) belongs to type-Ⅱ, which was generated from Cretaceous to Paleogene and its source rocks are distributed in the Wuerhe formation of the Permian in the Changji depression. The oil in the area of well Yong-6 (J2x) belongs to type-III, which was generated at the end of the Paleogene and its source rocks are distributed in the coal measures of the Jurassic in the Changji depression. The oil of well Zheng-1 and well Yong-1 belongs to type-IV, which was generated in the Paleogene, and its source rocks are distributed in the Wuerhe formation of the Lower Permian and coal measures of the Jurassic. It is indicated that the hydrocarbon accumulation history in the study area was controlled by the tectonic evolution history of the Che-Mo palaeohigh and the hydrocarbon generation history of well Pen-1 in the western depression and Changji depression.
基金Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA14010403)the China National Science and Technology Major Project(2016ZX05004,2016ZX05007-003)the Science and Technology Project of China National Petroleum Corporation(kt2020-01-03,2021DJ06)。
文摘Based on correlation between geochemical characteristics of Sinian and Cambrian source rocks and discovered gas reservoirs,paleoand the analysis on geological conditions of reservoir formation,the sources of natural gas in the Sinian of Sichuan Basin have been discussed to sort out the contribution of Sinian source rocks to the gas reservoirs and effectiveness of Sinian primary gas-bearing system.Through the analysis of natural gas composition,carbon and hydrogen isotopes and effectiveness of Sinian accumulation assemblages,it is concluded that:(1)The natural gas derived from the Sinian source rock is characterized by low ethane content,heavy ethane carbon isotope and light methane hydrogen isotope,and obviously different from the gas generated by the Cambrian source rock.(2)The gas reservoirs discovered in Sinian Dengying Formation are sourced by Sinian and Cambrian source rocks,and the Sinian source rock contributes different proportions to the gas in the 4th member and the 2nd member of the Dengying Formation,specifically,39%and 55%to the 4th member in marginal zone and intra-platform,54%and 68%to the 2th member in the marginal zone and intra-platform respectively.(3)The effectiveness of the Sinian primary gas-bearing system depends on the gas generating effectiveness of the source kitchen,reservoir and combination of gas accumulation elements.For high-over mature marine source rocks at the Ro of less than 3.5%,besides gas generated from the thermal cracking of liquid hydrocarbon,the kerogen still has some gas generation potential by thermal degradation.In addition,the Sinian microbial dolomite still preserves relatively good-quality reservoirs despite large burial depths,which match well with other basic conditions for gas accumulation in central Sichuan paleo-uplift,increasing the possibility of Sinian primary gas-bearing system.The research results confirm that the Sinian primary gas-bearing system is likely to form large-scale accumulation.
基金Project 40502013 supported by the National Natural Science Foundation of China
文摘Oils in Jinghu sag are abundant with high content of polar compounds and have a low ratio of saturate to aromatic hydrocarbons and a high ratio of resin to asphaltene. The gross composition of oils in the Jinghu sag suggests typical immature to low mature characteristics. Some compounds with low thermal stability were identified. Light hydrocarbons, a carbon preference index, an odd even index, n-alkane and hopane maturity parameters show mature features and little differences in the maturity level among oils. Sterane isomerization parameters indicate an immature to low mature status of oil. Transfer of the sedimentary center during sedimentation has led to different thermal histories among subsags and thus generated oils with different maturities. On the basis of source analyses, four migration and accumulation patterns with different maturity can be classified. Combined with available information on mergers of source, reservoir and long distance oil lateral migration, mixing conditions were present in the Jinghu sag. Experimental results indicate that maturity variations are caused by mixtures of hydrocarbons with different maturity.
基金the Northwest Branch Company, SINOPEC for access to samples and grant support
文摘Commercial oil flow has been obtained from the sandstone reservoir of the Lower Silurian Kelpintag Formation in the Well Shun-9 prospect area.In the present studies,10 Silurian oil and oil sand samples from six wells in the area were analyzed for their molecular and carbon isotopic compositions,oil alteration(biodegradation),oil source rock correlation and oil reservoir filling direction.All the Silurian oils and oil sands are characterized by low Pr/Ph and C21/C23 tricyclic terpane(〈1.0) ratios,"V"-pattern C27-C29 steranes distribution,low C28-sterane and triaromatic dinosterane abundances and light δ13C values,which can be correlated well with the carbonate source rock of the O3 l Lianglitage Formation.Different oil biodegradation levels have also been confirmed for the different oils/oil sands intervals.With the S1k2 seal,oils and oil sands from the S1k1 interval of the Kelpintag Formation have only suffered light biodegradation as confirmed by the presence of "UCM" and absence of 25-norhopanes,whereas the S1k3-1 oil sands were heavily biodegraded(proved by the presence of 25-norhopanes) due to the lack of the S1k2 seal,which suggests a significant role of the S1k2 seal in the protection of the Silurian oil reservoir.Based on the Ts/(Ts+Tm) and 4-/1-MDBT ratios as reservoir filling tracers,a general oil filling direction from NW to SE has been also estimated for the Silurian oil reservoir in the Well Shun-9 prospect area.