Internal polyhedral structures of a granular system can be investigated using the Voronoi tessellations.This technique has gained increasing recognition in research of kinetic properties of granular flows.For systems ...Internal polyhedral structures of a granular system can be investigated using the Voronoi tessellations.This technique has gained increasing recognition in research of kinetic properties of granular flows.For systems with mono-sized spherical particles,Voronoi tessellations can be utilized,while radial Voronoi tessellations are necessary for analyzing systems with multi-sized spherical particles.However,research about polyhedral structures of non-spherical particle systems is limited.We utilize the discrete element method to simulate a system of ellipsoidal particles,defined by the equation(x/a)^(2)+(y/1)^(2)+(z/1/a)^(2)=1,where a ranges from 1.1 to 2.0.The system is then dissected by using tangent planes at the contact points,and the geometric quantities of the resulting polyhedra in different shaped systems,such as surface area,volume,number of vertices,number of edges,and number of faces,are calculated.Meanwhile,the longitudinal and transverse wave velocities within the system are calculated with the time-of-flight method.The results demonstrate a strong correlation between the sound velocity of the system and the geometry of the dissected polyhedra.The sound velocity of the system increases with the increase in a,peaking at a=1.3,and then decreases as a continues to increase.The average volume,surface area,number of vertices,number of edges,and number of faces of the polyhedra decrease with the increase in sound velocity.That is,these quantities initially decrease with the increase in a,reaching minima at a=1.3,and then increase with further increase of a.The relationship between sound velocity and the geometric quantities of the dissected polyhedra can serve as a reference for acoustic material design.展开更多
Due to the scale invariance, the thermodynamic laws of strongly interacting limit unitary Fermi gas can be similar to those of non-interacting ideal gas. For example, the virial theorem between pressure and energy den...Due to the scale invariance, the thermodynamic laws of strongly interacting limit unitary Fermi gas can be similar to those of non-interacting ideal gas. For example, the virial theorem between pressure and energy density of the ideal gas P = 2E/aV is still satisfied by the unitary Fermi gas. This paper analyses the sound velocity of unitary Fermi gases with the quasi-linear approximation. For comparison, the sound velocities for the ideal Boltzmann, Bose and Fermi gas are also given. Quite interestingly, the sound velocity formula for the ideal non-interacting gas is found to be satisfied by the unitary Fermi gas in different temperature regions.展开更多
In view of the discrete characteristics of biological tissue, doublet mechanics has demonstrated its advantages in the mathematic description of tissue in terms of high frequency (〉 10 MHz) ultrasound. In this pape...In view of the discrete characteristics of biological tissue, doublet mechanics has demonstrated its advantages in the mathematic description of tissue in terms of high frequency (〉 10 MHz) ultrasound. In this paper, we take human breast biopsies as an example to study the influence of the internodal distance, a microscope parameter in biological tissue in doublet mechanics, on the sound velocity and attenuation by numerical simulation. The internodal distance causes the sound velocity and attenuation in biological tissue to change with the increase of frequency. The magnitude of such a change in pathological tissue is distinctly different from that in normal tissue, which can be used to differentiate pathological tissue from normal tissue and can depict the diseased tissue structure by obtaining the sound and attenuation distribution in the sample at high ultrasound frequency. A comparison of sensitivity between the doublet model and conventional continuum model is made, indicating that this is a new method of characterizing ultrasound tissue and diagnosing diseases.展开更多
The method of volume identification in pneumatics was studied through theoretical analysis and experimental investigation. Regarding discharging from a container as a thermodynamic process with invariable index the d...The method of volume identification in pneumatics was studied through theoretical analysis and experimental investigation. Regarding discharging from a container as a thermodynamic process with invariable index the dependence of the container’s volume on the pressure in the container and the index, during discharging at the velocity of sound, is deduced. Then through a lot of experiments, the value of index n of the process is found with a given precision and a specified volume range. Furthermore, the feasibility and practicability of this method are verified by experiments.展开更多
Spatial correlation of sound pressure and particle velocity of the surface noise in horizontally stratified media was demonstrated, with directional noise sources uniformly distributed on the ocean surface. In the eva...Spatial correlation of sound pressure and particle velocity of the surface noise in horizontally stratified media was demonstrated, with directional noise sources uniformly distributed on the ocean surface. In the evaluation of particle velocity, plane wave approximation was applied to each incident ray. Due to the equivalence of the sound source correlation property and its directivity, solutions for the spatial correlation of the field were transformed into the integration of the coherent function generated by a single directional source. As a typical horizontally stratified media, surface noise in a perfect waveguide was investigated. Correlation coefficients given by normal mode and geometric models show satisfactory agreement. Also, the normalized covariance between sound pressure and the vertical component of particle velocity is proportional to acoustic absorption coefficient, while that of the surface noise in semi-infinitely homogeneous space is zero.展开更多
Eckstrom-adcock iron carbide(Fe_(7)C_(3))is considered to be the main constituent of the Earth’s inner core due to its low shear wave velocity.However,the crystal structure of Fe_(7)C_(3)remains controversial and its...Eckstrom-adcock iron carbide(Fe_(7)C_(3))is considered to be the main constituent of the Earth’s inner core due to its low shear wave velocity.However,the crystal structure of Fe_(7)C_(3)remains controversial and its thermoelastic properties are not well constrained at high temperature and pressure.Based on the first-principles simulation method,we calculate the relative phase stability,equation of state,and sound velocity of Fe_(7)C_(3)under core condition.The results indicate that the orthorhombic phase of Fe_(7)C_(3)is stable under the core condition.While Fe_(7)C_(3)does reproduce the low shear wave velocity and high Poisson’s ratio of the inner core,its compressional wave velocity and density are 12%higher and 6%lower than those observed in seismic data,respectively.Therefore,we argue that carbon alone cannot completely explain the thermal properties of the inner core and the inclusion of other light elements may be required.展开更多
Since knowledge of the structure and elastic properties of Ta at high pressures is critical for addressing the recent controversies regarding the high-pressure stable phase and elastic properties, we perform a systema...Since knowledge of the structure and elastic properties of Ta at high pressures is critical for addressing the recent controversies regarding the high-pressure stable phase and elastic properties, we perform a systematical study on the highpressure structure and elastic properties of the cubic Ta by using the first-principles method. Results show that the initial body-centered cubic phase of Ta remains stable even up to 500 GPa and the high-pressure elastic properties are excellent/y consistent with the available experimental results. Besides, the high-pressure sound velocities of the single- and polycrystals Ta are also calculated based on the elastic constants, and the predications exhibit good agreement with the existing experimental data.展开更多
基金Supported by the National Natural Science Foundation of China(Grant Nos.12262005,11962003,and 11602062)the Postgraduate Education Reform and Quality Improvement Project of Henan Province(Grant No.YJS2024AL138)the Graduate Education Reform Project of Henan Province(Grant No.2023SJGLX096Y).
文摘Internal polyhedral structures of a granular system can be investigated using the Voronoi tessellations.This technique has gained increasing recognition in research of kinetic properties of granular flows.For systems with mono-sized spherical particles,Voronoi tessellations can be utilized,while radial Voronoi tessellations are necessary for analyzing systems with multi-sized spherical particles.However,research about polyhedral structures of non-spherical particle systems is limited.We utilize the discrete element method to simulate a system of ellipsoidal particles,defined by the equation(x/a)^(2)+(y/1)^(2)+(z/1/a)^(2)=1,where a ranges from 1.1 to 2.0.The system is then dissected by using tangent planes at the contact points,and the geometric quantities of the resulting polyhedra in different shaped systems,such as surface area,volume,number of vertices,number of edges,and number of faces,are calculated.Meanwhile,the longitudinal and transverse wave velocities within the system are calculated with the time-of-flight method.The results demonstrate a strong correlation between the sound velocity of the system and the geometry of the dissected polyhedra.The sound velocity of the system increases with the increase in a,peaking at a=1.3,and then decreases as a continues to increase.The average volume,surface area,number of vertices,number of edges,and number of faces of the polyhedra decrease with the increase in sound velocity.That is,these quantities initially decrease with the increase in a,reaching minima at a=1.3,and then increase with further increase of a.The relationship between sound velocity and the geometric quantities of the dissected polyhedra can serve as a reference for acoustic material design.
基金supported by the National Natural Science Foundation of China (Grant No. 10875050)
文摘Due to the scale invariance, the thermodynamic laws of strongly interacting limit unitary Fermi gas can be similar to those of non-interacting ideal gas. For example, the virial theorem between pressure and energy density of the ideal gas P = 2E/aV is still satisfied by the unitary Fermi gas. This paper analyses the sound velocity of unitary Fermi gases with the quasi-linear approximation. For comparison, the sound velocities for the ideal Boltzmann, Bose and Fermi gas are also given. Quite interestingly, the sound velocity formula for the ideal non-interacting gas is found to be satisfied by the unitary Fermi gas in different temperature regions.
基金Project supported by the National Basic Research Program of China(Grant Nos.2012CB921504 and 2011CB707902)the National Natural Science Foundation of China(Grant No.11274166)+3 种基金the Fundamental Research Funds for the Central Universities,China(Grant Nos.1113020403 and 1101020402)the State Key Laboratory of Acoustics,Chinese Academy of Sciences(Grant No.SKLA201401)the China Postdoctoral Science Foundation(Grant No.2013M531313)the Priority Academic Program Development of Jiangsu Provincial Higher Education Institutions and Scientific Research Foundation for Returned Overseas Chinese Scholars,State Education Ministry,and the Project of Interdisciplinary Center of Nanjing University,China(Grant No.NJUDC2012004)
文摘In view of the discrete characteristics of biological tissue, doublet mechanics has demonstrated its advantages in the mathematic description of tissue in terms of high frequency (〉 10 MHz) ultrasound. In this paper, we take human breast biopsies as an example to study the influence of the internodal distance, a microscope parameter in biological tissue in doublet mechanics, on the sound velocity and attenuation by numerical simulation. The internodal distance causes the sound velocity and attenuation in biological tissue to change with the increase of frequency. The magnitude of such a change in pathological tissue is distinctly different from that in normal tissue, which can be used to differentiate pathological tissue from normal tissue and can depict the diseased tissue structure by obtaining the sound and attenuation distribution in the sample at high ultrasound frequency. A comparison of sensitivity between the doublet model and conventional continuum model is made, indicating that this is a new method of characterizing ultrasound tissue and diagnosing diseases.
文摘The method of volume identification in pneumatics was studied through theoretical analysis and experimental investigation. Regarding discharging from a container as a thermodynamic process with invariable index the dependence of the container’s volume on the pressure in the container and the index, during discharging at the velocity of sound, is deduced. Then through a lot of experiments, the value of index n of the process is found with a given precision and a specified volume range. Furthermore, the feasibility and practicability of this method are verified by experiments.
基金Supported by the National Natural Science Foundation of China under Grant No.(50909028).
文摘Spatial correlation of sound pressure and particle velocity of the surface noise in horizontally stratified media was demonstrated, with directional noise sources uniformly distributed on the ocean surface. In the evaluation of particle velocity, plane wave approximation was applied to each incident ray. Due to the equivalence of the sound source correlation property and its directivity, solutions for the spatial correlation of the field were transformed into the integration of the coherent function generated by a single directional source. As a typical horizontally stratified media, surface noise in a perfect waveguide was investigated. Correlation coefficients given by normal mode and geometric models show satisfactory agreement. Also, the normalized covariance between sound pressure and the vertical component of particle velocity is proportional to acoustic absorption coefficient, while that of the surface noise in semi-infinitely homogeneous space is zero.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.41904085,41874103,and 42274124).
文摘Eckstrom-adcock iron carbide(Fe_(7)C_(3))is considered to be the main constituent of the Earth’s inner core due to its low shear wave velocity.However,the crystal structure of Fe_(7)C_(3)remains controversial and its thermoelastic properties are not well constrained at high temperature and pressure.Based on the first-principles simulation method,we calculate the relative phase stability,equation of state,and sound velocity of Fe_(7)C_(3)under core condition.The results indicate that the orthorhombic phase of Fe_(7)C_(3)is stable under the core condition.While Fe_(7)C_(3)does reproduce the low shear wave velocity and high Poisson’s ratio of the inner core,its compressional wave velocity and density are 12%higher and 6%lower than those observed in seismic data,respectively.Therefore,we argue that carbon alone cannot completely explain the thermal properties of the inner core and the inclusion of other light elements may be required.
基金Project supported by the Basic and Frontier Technical Research Project of Henan Province,China(Grant No.152300410228)the University Innovation Team Project in Henan Province,China(Grant No.15IRTSTHN004)the Key Scientific Research Project of Higher Education of Henan Province,China(Grant No.17A140014)
文摘Since knowledge of the structure and elastic properties of Ta at high pressures is critical for addressing the recent controversies regarding the high-pressure stable phase and elastic properties, we perform a systematical study on the highpressure structure and elastic properties of the cubic Ta by using the first-principles method. Results show that the initial body-centered cubic phase of Ta remains stable even up to 500 GPa and the high-pressure elastic properties are excellent/y consistent with the available experimental results. Besides, the high-pressure sound velocities of the single- and polycrystals Ta are also calculated based on the elastic constants, and the predications exhibit good agreement with the existing experimental data.