This work investigated the separation of potassium from sodium in alkaline solution using substituted phenol-based extractants.Superior potassium extraction was achieved with 4-tert-butyl-2-(α-methylbenzyl)phenol(t-B...This work investigated the separation of potassium from sodium in alkaline solution using substituted phenol-based extractants.Superior potassium extraction was achieved with 4-tert-butyl-2-(α-methylbenzyl)phenol(t-BAMBP)than 4-sec-butyl-2-(α-methylbenzyl)phenol(BAMBP).The optimum conditions for the extraction were 1 mol/L t-BAMBP,3:1 volumetric phase ratio(O/A),and two extraction stages.After cross-current extraction,the extraction ratio of potassium reached 90.8%.After scrubbing with deionised water at phase ratio of 4:1 and scrubbing stage of 4,a sodium scrubbing efficiency of 88.2%was obtained.After stripping using 1 mol/L H_(2)SO_(4) at phase ratio of 3:1,the stripping efficiency of potassium reached 94.2%.The potassium/sodium(K/Na)concentration ratio increased 14.3 times from 0.15 in the feed solution to 2.3 in the stripping solution.The efficient separation of potassium from sodium in alkaline solution was achieved via solvent extraction with t-BAMBP.展开更多
采用常规水热法合成SAPO-11和ZSM-22分子筛,制备分别含有分子筛的催化剂,借助XRD、SEM和NH3-TPD表征2种催化剂的结构和酸性,并以加氢预精制溶剂脱蜡油为原料,采用固定床反应器研究Pt/SAPO-11和Pt/ZSM-22催化剂的加氢异构反应性能.结果表...采用常规水热法合成SAPO-11和ZSM-22分子筛,制备分别含有分子筛的催化剂,借助XRD、SEM和NH3-TPD表征2种催化剂的结构和酸性,并以加氢预精制溶剂脱蜡油为原料,采用固定床反应器研究Pt/SAPO-11和Pt/ZSM-22催化剂的加氢异构反应性能.结果表明:催化剂的反应活性和选择性主要取决于催化剂的酸量和酸强度,相对而言,由于SAPO-11分子筛催化剂弱酸含量较高,具有更佳的异构化选择性.利用1 H NMR和13 C NMR核磁共振研究加氢异构反应前后基础油的化学结构变化,Pt/SAPO-11催化剂有较高的加氢异构选择性.展开更多
基金Projects(52034002,U1802253)supported by the National Natural Science Foundation of ChinaProject(2019YFC1908401)supported by the National Technology Support Project of China。
文摘This work investigated the separation of potassium from sodium in alkaline solution using substituted phenol-based extractants.Superior potassium extraction was achieved with 4-tert-butyl-2-(α-methylbenzyl)phenol(t-BAMBP)than 4-sec-butyl-2-(α-methylbenzyl)phenol(BAMBP).The optimum conditions for the extraction were 1 mol/L t-BAMBP,3:1 volumetric phase ratio(O/A),and two extraction stages.After cross-current extraction,the extraction ratio of potassium reached 90.8%.After scrubbing with deionised water at phase ratio of 4:1 and scrubbing stage of 4,a sodium scrubbing efficiency of 88.2%was obtained.After stripping using 1 mol/L H_(2)SO_(4) at phase ratio of 3:1,the stripping efficiency of potassium reached 94.2%.The potassium/sodium(K/Na)concentration ratio increased 14.3 times from 0.15 in the feed solution to 2.3 in the stripping solution.The efficient separation of potassium from sodium in alkaline solution was achieved via solvent extraction with t-BAMBP.
文摘采用常规水热法合成SAPO-11和ZSM-22分子筛,制备分别含有分子筛的催化剂,借助XRD、SEM和NH3-TPD表征2种催化剂的结构和酸性,并以加氢预精制溶剂脱蜡油为原料,采用固定床反应器研究Pt/SAPO-11和Pt/ZSM-22催化剂的加氢异构反应性能.结果表明:催化剂的反应活性和选择性主要取决于催化剂的酸量和酸强度,相对而言,由于SAPO-11分子筛催化剂弱酸含量较高,具有更佳的异构化选择性.利用1 H NMR和13 C NMR核磁共振研究加氢异构反应前后基础油的化学结构变化,Pt/SAPO-11催化剂有较高的加氢异构选择性.