The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has...The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has been employed as a coating agent.The SEM micrographs revealed distinct features of both pure AN and NC,contrasting with the irregular granular surface topography of the coated AN particles,demonstrating the adherence of NC on the AN surface.Structural analysis via infrared spectroscopy(IR)demonstrated a successful association of AN and NC,with slight shifts observed in IR bands indicating interfacial interactions.Powder X-ray Diffraction(PXRD)analysis further elucidated the structural changes induced by the coating process,revealing that the NC coating altered the crystallization pattern of its pure form.Thermal analysis demonstrates distinct profiles for pure and coated AN,for which the coated sample exhibits a temperature increase and an enthalpy decrease of the room temperature allotropic transition by 6℃,and 36%,respectively.Furthermore,the presence of NC coating alters the intermolecular forces within the composite system,leading to a reduction in melting enthalpy of coated AN by~39%compared to pure AN.The thermal decomposition analysis shows a two-step thermolysis process for coated AN,with a significant increase in the released heat by about 78%accompanied by an increase in the activation barrier of NC and AN thermolysis,demonstrating a stabilized reactivity of the AN-NC particles.These findings highlight the synergistic effect of NC coating on AN particles,which contributed to a structural and reactive stabilization of both AN and NC,proving the potential application of NC-coated AN as a strategically advantageous oxidizer in composite solid propellant formulations.展开更多
In order to enhance the dynamic control precision of inertial stabilization platform(ISP),a disturbance sliding mode observer(DSMO)is proposed in this paper suppressing disturbance torques inherent within the system.T...In order to enhance the dynamic control precision of inertial stabilization platform(ISP),a disturbance sliding mode observer(DSMO)is proposed in this paper suppressing disturbance torques inherent within the system.The control accuracy of ISP is fundamentally circumscribed by various disturbance torques in rotating shaft.Therefore,a dynamic model of ISP incorporating composite perturbations is established with regard to the stabilization of axis in the inertial reference frame.Subsequently,an online estimator for control loop uncertainties based on the sliding mode control algorithm is designed to estimate the aggregate disturbances of various parameters uncertainties and other unmodeled disturbances that cannot be accurately calibrated.Finally,the proposed DSMO is integrated into a classical proportional-integral-derivative(PID)control scheme,utilizing feedforward approach to compensate the composite disturbance in the control loop online.The effectiveness of the proposed disturbance observer is validated through simulation and hardware experimentation,demonstrating a significant improvement in the dynamic control performance and robustness of the classical PID controller extensively utilized in the field of engineering.展开更多
Solidification/stabilization (S/S) is one of the most effective methods of dealing with heavy metal contaminated soils. The effects of cyclic wetting and drying on solidified/stabilized contaminated soils were inves...Solidification/stabilization (S/S) is one of the most effective methods of dealing with heavy metal contaminated soils. The effects of cyclic wetting and drying on solidified/stabilized contaminated soils were investigated. A series of test program, unconfined compressive strength (UCS) test, TCLP leaching test and scanning electron microscopy (SEM) test, were performed on lead and zinc contaminated soils solidified/stabilized by fly ash. Test results show that UCS and the leaching characteristics of heavy metal ions of S/S contaminated soils are significantly improved with the increase of fly ash content. UCS of S/S soils firstly increases with the increase of the times of drying and wetting cycles, after reaching the peak, it decreases with it. When the pollutant content is lower (1 000 mg/kg), the TCLP concentration first slightly decreases under cyclic drying and wetting, then increases, but the change is minor. The TCLP concentration is higher under a high pollutant content of 5 000 mg/kg, and increases with the increase of the times of drying and wetting cycles. The results of scanning electron microscopy (SEM) test are consistent with UCS tests and TCLP leaching tests, which reveals the micro-mechanism of the variations of engineering properties of stabilized contaminated soils after drying and wetting cycles.展开更多
The rapidly solidified powder of AlFeCrZrVSi aluminum alloy was prepared using multistage atomization and consolidated by hotextrusion, the evolution of microstructure of the extruded materials during thermal exposure...The rapidly solidified powder of AlFeCrZrVSi aluminum alloy was prepared using multistage atomization and consolidated by hotextrusion, the evolution of microstructure of the extruded materials during thermal exposure was studied with optical microscope, Xray diffraction and transmission electron microscope(TEM). The results show that the majority of dispersions present in the asextruded alloy are metastable Al12(Fe, Cr, V)3Si, which has excellent thermaldynamical stability and coarsening resistance; the coarsening ratecontrolling process of the Al12(Fe, Cr, V)3Si phase is considered to be diffusion of Fe atom along grain boundaries instead of bulk diffusion of Fe atom.展开更多
The stabilization and trajectory tracking problems of autonomous airship's planar motion are studied. By defining novel configuration error and velocity error, the dynamics of error systems are derived. By applying L...The stabilization and trajectory tracking problems of autonomous airship's planar motion are studied. By defining novel configuration error and velocity error, the dynamics of error systems are derived. By applying Lyapunov stability method, the state feedback control laws are designed and the close-loop error systems are proved to be uniformly asymptotically stable by Matrosov theorem. In particular, the controller does not need knowledge on system parameters in the case of set-point stabilization, which makes the controller robust with respect to parameter uncertainty. Numerical simulations illustrate the effectiveness of the controller designed.展开更多
To meet the commercial requirements of inorganic heat insulators,the mixture of diatomite and Ca(OH)2 are evenly dispersed,mold-compacted,and then hydrothermally solidified due to the formation of tobermorite under an...To meet the commercial requirements of inorganic heat insulators,the mixture of diatomite and Ca(OH)2 are evenly dispersed,mold-compacted,and then hydrothermally solidified due to the formation of tobermorite under an autoclaved process.Systematic investigations of the preparation conditions(including mix ratio,autoclaved factors,mold pressure,etc)were carried out to optimize the serving properties of such tobermorite-based products.As a result,a compressive strength of more than 30 MPa was realized for the specimen in high density(about 1.30(g·cm-3)).On the contrary,the specimen in light weight for example 0.63(g·cm-3)typically showed a thermal conductivity of around 0.12(W·m-1·K-1).The present work developed a feasible way to produce and to control the serving properties of diatomite-based heat insulators by a process of hydrothermal solidification,in which the optimized value of Ca/Si ratio was proposed to be 0.6~0.7,while the water content is 25% in weight,and hydrothermal reaction is performed at 180 ℃ for no more than 24 hours.展开更多
Stability analysis and stabilization for discrete-time singular delay systems are addressed,respectively.Firstly,a sufficient condition for regularity,causality and stability for discrete-time singular delay systems i...Stability analysis and stabilization for discrete-time singular delay systems are addressed,respectively.Firstly,a sufficient condition for regularity,causality and stability for discrete-time singular delay systems is derived.Then,by applying the skill of matrix theory,the state feedback controller is designed to guarantee the closed-loop discrete-time singular delay systems to be regular,casual and stable.Finally,numerical examples are given to demonstrate the effectiveness of the proposed method.展开更多
The stability and stabilization of a class of linear switched time-varying delay systems are investigated. A piecewise quadratic Lyapunov function (PWQLF) is constructed and is used to obtain the stability condition...The stability and stabilization of a class of linear switched time-varying delay systems are investigated. A piecewise quadratic Lyapunov function (PWQLF) is constructed and is used to obtain the stability conditions based on the linear matrix inequalities (LMIs). The stabilizing controller for this class of system is then designed and the solution of the desired controller can be obtained by a cone complementary linearization algorithm. Numerical examples are provided to illustrate the less conservativeness of the new stability and the validity of the controller design procedures.展开更多
The effects of solidification rate, modifications and pouring temperature on the microstructure and mechanical properties of casting zinc aluminum alloy ZA27 have been investigated. The results show that the number an...The effects of solidification rate, modifications and pouring temperature on the microstructure and mechanical properties of casting zinc aluminum alloy ZA27 have been investigated. The results show that the number and distribution of pores are the key factors affecting the mechanical properties of ZA27. A slow solidification rate is beneficial to the ductility, while a rapid solidification rate improves the tensile strength of alloy basically. Among the modification agents RE, Sb Te, Sb Te RE and Sb Te Ti B, the addition of Sb Te to melt results in the best modified microstructure. The optimum pouring temperature for ZA27 is approximately 550?℃.展开更多
Research and development of green oxidizers and green fuels as a possible replacement for ammonium perchlorate(NH4ClO4,AP) and hydrazine(N2H4) respectively has been increased considerably in the recent years.AP and hy...Research and development of green oxidizers and green fuels as a possible replacement for ammonium perchlorate(NH4ClO4,AP) and hydrazine(N2H4) respectively has been increased considerably in the recent years.AP and hydrazine are the oxidizer and fuel entities,and used in solid and liquid rocket motors respectively.AP is highly toxic and led to adverse health effects,while hydrazine is carcinogenic in nature.AP is in use from the last several decades for rocket and space shuttle propulsion,while hydrazine is used in upper stage liquid propelled rocket motors.It’s a tough task to replace AP with the currently available green oxidizers;since their ballistic properties are weaker when compared to AP and also they can’t be successfully deployed in a solid rocket motor at present Some important available solid green oxidizers are ammonium nitrate(AN),ammonium dinitramide(ADN),hydroxyl ammonium nitrate(HAN),and hydrazinium nitroformate(HNF).However,AN is one of the cheap and readily available oxidizer,and has great potential to use in solid/liquid rocket motors.Tremendous progress has been envisaged till now,and more progress will be there in the coming future over the development of AN based green energetic materials(GEM’s).A concise overview has been presented over the development of phase stabilized ammonium nitrate(PSAN) and AN/KDN based green oxidizers in the present review paper.展开更多
A new robust electronic image stabilization system is presented, which involves feature-point, tracking based global motion estimation and Kalman filtering based motion compensation. First, global motion is estimated ...A new robust electronic image stabilization system is presented, which involves feature-point, tracking based global motion estimation and Kalman filtering based motion compensation. First, global motion is estimated from the local motions of selected feature points. Considering the local moving objects or the inevitable mismatch, the matching validation, based on the stable relative distance between the points set is proposed, thus maintaining high accuracy and robustness. Next, the global motion parameters are accumulated for correction by Kalman filteration. The experimental result illustrates that the proposed system is effective to stabilize translational, rotational, and zooming jitter and robust to local motions.展开更多
With the experiment and finite element simulation, the influences of power ultrasonic on the solidification structure of 7050 aluminum alloy ingot in semi-continuous casting were researched, and the effects of casting...With the experiment and finite element simulation, the influences of power ultrasonic on the solidification structure of 7050 aluminum alloy ingot in semi-continuous casting were researched, and the effects of casting speed on solidification structure in ultrasonic field were also analyzed. The experiment and simulation results show that the solidification structure of the ingot is homogeneously distributed, and its grain size is obviously refined at ultrasonic power of 240 W. The average grain sizes, which can be seen from the Leica microscope, are less than 100 μm. When the casting speed is 45-50 mm/min, the best grain refinement is obtained.展开更多
The problems of robust stability and stabilization via memoryless state feedback for a class of discrete-time switched singular systems with time-varying delays and linear fractional uncertainties are investigated.By ...The problems of robust stability and stabilization via memoryless state feedback for a class of discrete-time switched singular systems with time-varying delays and linear fractional uncertainties are investigated.By constructing a novel switched Lyapunov-Krasovskii functional,a delay-dependent criterion for the unforced system to be regular,causal and uniformly asymptotically stable is established in terms of linear matrix inequalities(LMIs).An explicit expression for the desired memoryless state feedback stabilization controller is also given.The merits of the proposed criteria lie in their less conservativeness and relative simplicity,which are achieved by considering additionally useful terms(ignored in previous methods) when estimating the upper bound of the forward difference of the Lyapunov-Krasovskii functional and by avoiding utilizing any model augmentation transformation.Some numerical examples are provided to illustrate the validity of the proposed methods.展开更多
To alleviate the conservativeness of the stability criterion for Takagi-Sugeno (T-S) fuzzy time-delay systems, a new delay-dependent stability criterion was proposed by introducing a new augmented Lyapunov function ...To alleviate the conservativeness of the stability criterion for Takagi-Sugeno (T-S) fuzzy time-delay systems, a new delay-dependent stability criterion was proposed by introducing a new augmented Lyapunov function with an additional triple-integral term, which was firstly u3ed to derive the stability criterion for T-S fuzzy time-delay systems. By the same approach, the robust stability issue for fuzzy time-delay systems with uncertain parameters was also considered. On the other hand, in order to enhance the design flexibility, a new design approach for uncertain fuzzy time-delay systems under imperfect premise matching was also proposed, which allows the fuzzy controller to employ different membership functions from the fuzzy time-delay model. By the numerical examples, the proposed stability conditions are less conservative in the sense of getting larger allowable time-delay and obtaining smaller feedback control gains. For instance, when the allowable time-delay increases from 7.3 s to 12 s for an uncertain T-S fuzzy control system with time-delay, the norm of the feedback gains decreases from (34.299 2, 38.560 3) to (10.073 3, 11.349 0), respectively. Meanwhile, the effectiveness of the proposed design method was illustrated by the last example with the robustly stable curves of system state under the initial condition of x(0) = [3 -1].展开更多
In this reported study, the density functional theory(DFT) was used at the(U)B3LYP/6-311G(d,p) level to investigate the stabilization process of the nitrate ester plasticized polyether propellant(NEPE). Molecular simu...In this reported study, the density functional theory(DFT) was used at the(U)B3LYP/6-311G(d,p) level to investigate the stabilization process of the nitrate ester plasticized polyether propellant(NEPE). Molecular simulations were conducted of the reaction that generates NO_(2), the autocatalytic and aging reaction triggered by the NO_(2), and the nitrogen dioxide absorption reaction of the stabilizers during the propellent stabilization process. These simulations were derived using the transition-state theory(TST)and variational transition-state theory(VTST). The simulation results suggested that the stabilization of the NEPE propellant consisted of three stages. First, heat and NO_(2) were generated during the denitrification reaction of nitroglycerine(NG) and 1,2,4-butanetriol trinitrate(BTTN) in the NEPE propellant.Second, nitroso products were generated by the reactions of N-Methyl-4-nitroaniline(MNA) and 2-nitrodiphenylamine(2NDPA) with NO_(2). Third, the stabilizers were exhausted and the autocatalytic reaction of NG and BTTN and the aging reaction of polyethylene glycol(PEG) were triggered by the heat and NO_(2)generated in the first stage. By comparing the energy barriers of the various reactions, it was found that the NO_(2)generated from the denitrification reaction significantly reduced the reaction energy barrier to 105.56-126.32 kJ/mol, also increased the reaction rate constant, and decreased the thermal stability and energetic properties of the NEPE propellant. In addition, the NO_(2)also weakened the mechanical properties of the NEPE propellant by attacking the-CH2groups and the O atoms in the PEG molecular chain. The energy barriers of the reactions of MNA and 2NDPA with NO_(2)(94.61-133.61 k J/mol) were lower than those of the autocatalytic and decomposition reactions of NG, BTTN, and the aging reactions of PEG(160.30-279.46 kJ/mol). This indicated that, by eliminating NO_(2), the stabilizer in the NEPE propellant can effectively prevent NO_(2)from reacting with the NG, BTTN, and PEG in the NEPE propellant. Consequently, this would help maintain the energy and mechanical properties of the NEPE propellant, thereby improving its thermal stability.展开更多
Small signal instability may cause severe accidents for power system if it can not be dear correctly and timely. How to maintain power system stable under small signal disturbance is a big challenge for power system o...Small signal instability may cause severe accidents for power system if it can not be dear correctly and timely. How to maintain power system stable under small signal disturbance is a big challenge for power system operators and dispatchers. Time delay existing in signal transmission process makes the problem more complex. Conventional eigenvalue analysis method neglects time delay influence and can not precisely describe power system dynamic behaviors. In this work, a modified small signal stability model considering time varying delay influence was constructed and a new time delay controller was proposed to stabilize power system under disturbance. By Lyapunov-Krasovskii function, the control law in the form of nonlinear matrix inequality (NLMI) was derived. Considering synthesis method limitation for time delay controller at present, both parameter adjustment method by using linear matrix inequality (LMI) solver and iteration searching method by solving nonlinear minimization problem were suggested to design the controller. Simulation tests were carried out on synchronous-machine infinite-bus power system. Satisfactory test results verify the correctness of the proposed model and the feasibility of the stabilization approach.展开更多
An adaptive controller of full state feedback for certain cascade nonlinear systems achieving input-to-state stability with respect to unknown bounded disturbance is designed using backstepping and control Lyapunov fu...An adaptive controller of full state feedback for certain cascade nonlinear systems achieving input-to-state stability with respect to unknown bounded disturbance is designed using backstepping and control Lyapunov function (CLF) techniques. We show that unknown bounded disturbance can be estimated by update laws, which requires less information on unknown disturbance, as a part of stabilizing control. The design method achieves the desired property: global robust stability. Our contribution is illustrated with the example of a disturbed pendulum.展开更多
Many construction and post-construction problems have been reported in the literature when saline soils have been used without understanding of their abnormal behavior,especially their inferior bearing capacity in the...Many construction and post-construction problems have been reported in the literature when saline soils have been used without understanding of their abnormal behavior,especially their inferior bearing capacity in the natural condition.The strength of these soils further decreases on soaking.Saline soil deposits cover extensive areas in central Iran and are associated with geotechnical problems such as excessive differential settlement,susceptibility to strength loss and collapse upon wetting.Because of these characteristics,some of the roads constructed on saline soils in Taleghan area have exhibited deterioration in the form of raveling,cracking and landslides.The main objective of this work is to improve the load-bearing capacity of pavements constructed on Taleghan saline soils using lime and micro silica.Soil samples from Hashtgerd-Taleghan road were collected and tested for improving their properties using lime and micro silica at different dosages ranging from 0 to 6%.The load-bearing capacity of stabilized soil mixtures was evaluated using California Bearing Ratio(CBR) and unconfined compressive strength tests.The test results indicate that the lime improves the performance of soil significantly.The addition of 2% lime with 3% micro silica has satisfied the strength-deformation requirements.Therefore,improved soil can be used as a good subbase in flexible pavements.展开更多
Rapidly solidified Sn-9Zn-0.1Pr(/Nd) alloy foils were prepared by melt-spinning method. Through comparison, the effects of rapid solidification process and 0.1%Pr/Nd(mass fraction) addition on the microstructure, ther...Rapidly solidified Sn-9Zn-0.1Pr(/Nd) alloy foils were prepared by melt-spinning method. Through comparison, the effects of rapid solidification process and 0.1%Pr/Nd(mass fraction) addition on the microstructure, thermodynamic characteristic of Sn-9Zn solder alloy were analyzed. The tensile-shear tests were used to evaluate the mechanical properties of solder/Cu joints. The results show that the rapid solidification process can greatly refine the microstructure of Sn-9Zn-0.1Pr(/Nd) alloys. After rapid solidification, the effects of Pr/Nd addition on microstructure are depressed. The pasty range of the rapidly solidified Sn-Zn-RE solders is also reduced significantly. The mechanical properties of solder/Cu joints are obviously improved using the rapidly solidified Sn-9Zn-0.1Pr(/Nd) solder alloy, which results in the formation of uniform interface. The promotion effect of Nd addition in Sn-9Zn alloy on the interfacial reaction of solder/Cu joint is more remarkable than that of Pr.展开更多
In this paper, we investigate the decentralized stabilization of some time-varying uncertain large-scale stochastic systems with delays under matching conditions. A type of decentralized controllers with guaranteed s...In this paper, we investigate the decentralized stabilization of some time-varying uncertain large-scale stochastic systems with delays under matching conditions. A type of decentralized controllers with guaranteed stabilization and sub-optimality are also given.展开更多
文摘The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has been employed as a coating agent.The SEM micrographs revealed distinct features of both pure AN and NC,contrasting with the irregular granular surface topography of the coated AN particles,demonstrating the adherence of NC on the AN surface.Structural analysis via infrared spectroscopy(IR)demonstrated a successful association of AN and NC,with slight shifts observed in IR bands indicating interfacial interactions.Powder X-ray Diffraction(PXRD)analysis further elucidated the structural changes induced by the coating process,revealing that the NC coating altered the crystallization pattern of its pure form.Thermal analysis demonstrates distinct profiles for pure and coated AN,for which the coated sample exhibits a temperature increase and an enthalpy decrease of the room temperature allotropic transition by 6℃,and 36%,respectively.Furthermore,the presence of NC coating alters the intermolecular forces within the composite system,leading to a reduction in melting enthalpy of coated AN by~39%compared to pure AN.The thermal decomposition analysis shows a two-step thermolysis process for coated AN,with a significant increase in the released heat by about 78%accompanied by an increase in the activation barrier of NC and AN thermolysis,demonstrating a stabilized reactivity of the AN-NC particles.These findings highlight the synergistic effect of NC coating on AN particles,which contributed to a structural and reactive stabilization of both AN and NC,proving the potential application of NC-coated AN as a strategically advantageous oxidizer in composite solid propellant formulations.
基金supported by the National Natural Science Foundation of China(61803015).
文摘In order to enhance the dynamic control precision of inertial stabilization platform(ISP),a disturbance sliding mode observer(DSMO)is proposed in this paper suppressing disturbance torques inherent within the system.The control accuracy of ISP is fundamentally circumscribed by various disturbance torques in rotating shaft.Therefore,a dynamic model of ISP incorporating composite perturbations is established with regard to the stabilization of axis in the inertial reference frame.Subsequently,an online estimator for control loop uncertainties based on the sliding mode control algorithm is designed to estimate the aggregate disturbances of various parameters uncertainties and other unmodeled disturbances that cannot be accurately calibrated.Finally,the proposed DSMO is integrated into a classical proportional-integral-derivative(PID)control scheme,utilizing feedforward approach to compensate the composite disturbance in the control loop online.The effectiveness of the proposed disturbance observer is validated through simulation and hardware experimentation,demonstrating a significant improvement in the dynamic control performance and robustness of the classical PID controller extensively utilized in the field of engineering.
基金Foundation item: Projects(41172273, 40802079, 51108288) supported by the National Natural Science Foundation of China Project(KLE-TJGE-B1106) supported by the Opening Fund of Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education (Tongji University), China
文摘Solidification/stabilization (S/S) is one of the most effective methods of dealing with heavy metal contaminated soils. The effects of cyclic wetting and drying on solidified/stabilized contaminated soils were investigated. A series of test program, unconfined compressive strength (UCS) test, TCLP leaching test and scanning electron microscopy (SEM) test, were performed on lead and zinc contaminated soils solidified/stabilized by fly ash. Test results show that UCS and the leaching characteristics of heavy metal ions of S/S contaminated soils are significantly improved with the increase of fly ash content. UCS of S/S soils firstly increases with the increase of the times of drying and wetting cycles, after reaching the peak, it decreases with it. When the pollutant content is lower (1 000 mg/kg), the TCLP concentration first slightly decreases under cyclic drying and wetting, then increases, but the change is minor. The TCLP concentration is higher under a high pollutant content of 5 000 mg/kg, and increases with the increase of the times of drying and wetting cycles. The results of scanning electron microscopy (SEM) test are consistent with UCS tests and TCLP leaching tests, which reveals the micro-mechanism of the variations of engineering properties of stabilized contaminated soils after drying and wetting cycles.
文摘The rapidly solidified powder of AlFeCrZrVSi aluminum alloy was prepared using multistage atomization and consolidated by hotextrusion, the evolution of microstructure of the extruded materials during thermal exposure was studied with optical microscope, Xray diffraction and transmission electron microscope(TEM). The results show that the majority of dispersions present in the asextruded alloy are metastable Al12(Fe, Cr, V)3Si, which has excellent thermaldynamical stability and coarsening resistance; the coarsening ratecontrolling process of the Al12(Fe, Cr, V)3Si phase is considered to be diffusion of Fe atom along grain boundaries instead of bulk diffusion of Fe atom.
文摘The stabilization and trajectory tracking problems of autonomous airship's planar motion are studied. By defining novel configuration error and velocity error, the dynamics of error systems are derived. By applying Lyapunov stability method, the state feedback control laws are designed and the close-loop error systems are proved to be uniformly asymptotically stable by Matrosov theorem. In particular, the controller does not need knowledge on system parameters in the case of set-point stabilization, which makes the controller robust with respect to parameter uncertainty. Numerical simulations illustrate the effectiveness of the controller designed.
文摘To meet the commercial requirements of inorganic heat insulators,the mixture of diatomite and Ca(OH)2 are evenly dispersed,mold-compacted,and then hydrothermally solidified due to the formation of tobermorite under an autoclaved process.Systematic investigations of the preparation conditions(including mix ratio,autoclaved factors,mold pressure,etc)were carried out to optimize the serving properties of such tobermorite-based products.As a result,a compressive strength of more than 30 MPa was realized for the specimen in high density(about 1.30(g·cm-3)).On the contrary,the specimen in light weight for example 0.63(g·cm-3)typically showed a thermal conductivity of around 0.12(W·m-1·K-1).The present work developed a feasible way to produce and to control the serving properties of diatomite-based heat insulators by a process of hydrothermal solidification,in which the optimized value of Ca/Si ratio was proposed to be 0.6~0.7,while the water content is 25% in weight,and hydrothermal reaction is performed at 180 ℃ for no more than 24 hours.
基金supported by the National Natural Science Foundation of China (6090400960974004)
文摘Stability analysis and stabilization for discrete-time singular delay systems are addressed,respectively.Firstly,a sufficient condition for regularity,causality and stability for discrete-time singular delay systems is derived.Then,by applying the skill of matrix theory,the state feedback controller is designed to guarantee the closed-loop discrete-time singular delay systems to be regular,casual and stable.Finally,numerical examples are given to demonstrate the effectiveness of the proposed method.
基金the National Natural Science Foundation of China (69874008).
文摘The stability and stabilization of a class of linear switched time-varying delay systems are investigated. A piecewise quadratic Lyapunov function (PWQLF) is constructed and is used to obtain the stability conditions based on the linear matrix inequalities (LMIs). The stabilizing controller for this class of system is then designed and the solution of the desired controller can be obtained by a cone complementary linearization algorithm. Numerical examples are provided to illustrate the less conservativeness of the new stability and the validity of the controller design procedures.
文摘The effects of solidification rate, modifications and pouring temperature on the microstructure and mechanical properties of casting zinc aluminum alloy ZA27 have been investigated. The results show that the number and distribution of pores are the key factors affecting the mechanical properties of ZA27. A slow solidification rate is beneficial to the ductility, while a rapid solidification rate improves the tensile strength of alloy basically. Among the modification agents RE, Sb Te, Sb Te RE and Sb Te Ti B, the addition of Sb Te to melt results in the best modified microstructure. The optimum pouring temperature for ZA27 is approximately 550?℃.
文摘Research and development of green oxidizers and green fuels as a possible replacement for ammonium perchlorate(NH4ClO4,AP) and hydrazine(N2H4) respectively has been increased considerably in the recent years.AP and hydrazine are the oxidizer and fuel entities,and used in solid and liquid rocket motors respectively.AP is highly toxic and led to adverse health effects,while hydrazine is carcinogenic in nature.AP is in use from the last several decades for rocket and space shuttle propulsion,while hydrazine is used in upper stage liquid propelled rocket motors.It’s a tough task to replace AP with the currently available green oxidizers;since their ballistic properties are weaker when compared to AP and also they can’t be successfully deployed in a solid rocket motor at present Some important available solid green oxidizers are ammonium nitrate(AN),ammonium dinitramide(ADN),hydroxyl ammonium nitrate(HAN),and hydrazinium nitroformate(HNF).However,AN is one of the cheap and readily available oxidizer,and has great potential to use in solid/liquid rocket motors.Tremendous progress has been envisaged till now,and more progress will be there in the coming future over the development of AN based green energetic materials(GEM’s).A concise overview has been presented over the development of phase stabilized ammonium nitrate(PSAN) and AN/KDN based green oxidizers in the present review paper.
基金the National Natural Science Foundation (60572152) of China and Science Foundation ofShaanxi Province (2005F26)
文摘A new robust electronic image stabilization system is presented, which involves feature-point, tracking based global motion estimation and Kalman filtering based motion compensation. First, global motion is estimated from the local motions of selected feature points. Considering the local moving objects or the inevitable mismatch, the matching validation, based on the stable relative distance between the points set is proposed, thus maintaining high accuracy and robustness. Next, the global motion parameters are accumulated for correction by Kalman filteration. The experimental result illustrates that the proposed system is effective to stabilize translational, rotational, and zooming jitter and robust to local motions.
基金Project(2010CB731700) supported by the National Basic Research Program of China
文摘With the experiment and finite element simulation, the influences of power ultrasonic on the solidification structure of 7050 aluminum alloy ingot in semi-continuous casting were researched, and the effects of casting speed on solidification structure in ultrasonic field were also analyzed. The experiment and simulation results show that the solidification structure of the ingot is homogeneously distributed, and its grain size is obviously refined at ultrasonic power of 240 W. The average grain sizes, which can be seen from the Leica microscope, are less than 100 μm. When the casting speed is 45-50 mm/min, the best grain refinement is obtained.
基金supported by the National Natural Science Foundation of China(6090402060835001)the Jiangsu Planned Projects for Postdoctoral Research Funds(0802010C)
文摘The problems of robust stability and stabilization via memoryless state feedback for a class of discrete-time switched singular systems with time-varying delays and linear fractional uncertainties are investigated.By constructing a novel switched Lyapunov-Krasovskii functional,a delay-dependent criterion for the unforced system to be regular,causal and uniformly asymptotically stable is established in terms of linear matrix inequalities(LMIs).An explicit expression for the desired memoryless state feedback stabilization controller is also given.The merits of the proposed criteria lie in their less conservativeness and relative simplicity,which are achieved by considering additionally useful terms(ignored in previous methods) when estimating the upper bound of the forward difference of the Lyapunov-Krasovskii functional and by avoiding utilizing any model augmentation transformation.Some numerical examples are provided to illustrate the validity of the proposed methods.
基金Project(61273095)supported by the National Natural Science Foundation of ChinaProject(135225)supported by the Academy of Finland
文摘To alleviate the conservativeness of the stability criterion for Takagi-Sugeno (T-S) fuzzy time-delay systems, a new delay-dependent stability criterion was proposed by introducing a new augmented Lyapunov function with an additional triple-integral term, which was firstly u3ed to derive the stability criterion for T-S fuzzy time-delay systems. By the same approach, the robust stability issue for fuzzy time-delay systems with uncertain parameters was also considered. On the other hand, in order to enhance the design flexibility, a new design approach for uncertain fuzzy time-delay systems under imperfect premise matching was also proposed, which allows the fuzzy controller to employ different membership functions from the fuzzy time-delay model. By the numerical examples, the proposed stability conditions are less conservative in the sense of getting larger allowable time-delay and obtaining smaller feedback control gains. For instance, when the allowable time-delay increases from 7.3 s to 12 s for an uncertain T-S fuzzy control system with time-delay, the norm of the feedback gains decreases from (34.299 2, 38.560 3) to (10.073 3, 11.349 0), respectively. Meanwhile, the effectiveness of the proposed design method was illustrated by the last example with the robustly stable curves of system state under the initial condition of x(0) = [3 -1].
基金the support provided by the School of Physics and Optoelectronic Engineering of Ludong University。
文摘In this reported study, the density functional theory(DFT) was used at the(U)B3LYP/6-311G(d,p) level to investigate the stabilization process of the nitrate ester plasticized polyether propellant(NEPE). Molecular simulations were conducted of the reaction that generates NO_(2), the autocatalytic and aging reaction triggered by the NO_(2), and the nitrogen dioxide absorption reaction of the stabilizers during the propellent stabilization process. These simulations were derived using the transition-state theory(TST)and variational transition-state theory(VTST). The simulation results suggested that the stabilization of the NEPE propellant consisted of three stages. First, heat and NO_(2) were generated during the denitrification reaction of nitroglycerine(NG) and 1,2,4-butanetriol trinitrate(BTTN) in the NEPE propellant.Second, nitroso products were generated by the reactions of N-Methyl-4-nitroaniline(MNA) and 2-nitrodiphenylamine(2NDPA) with NO_(2). Third, the stabilizers were exhausted and the autocatalytic reaction of NG and BTTN and the aging reaction of polyethylene glycol(PEG) were triggered by the heat and NO_(2)generated in the first stage. By comparing the energy barriers of the various reactions, it was found that the NO_(2)generated from the denitrification reaction significantly reduced the reaction energy barrier to 105.56-126.32 kJ/mol, also increased the reaction rate constant, and decreased the thermal stability and energetic properties of the NEPE propellant. In addition, the NO_(2)also weakened the mechanical properties of the NEPE propellant by attacking the-CH2groups and the O atoms in the PEG molecular chain. The energy barriers of the reactions of MNA and 2NDPA with NO_(2)(94.61-133.61 k J/mol) were lower than those of the autocatalytic and decomposition reactions of NG, BTTN, and the aging reactions of PEG(160.30-279.46 kJ/mol). This indicated that, by eliminating NO_(2), the stabilizer in the NEPE propellant can effectively prevent NO_(2)from reacting with the NG, BTTN, and PEG in the NEPE propellant. Consequently, this would help maintain the energy and mechanical properties of the NEPE propellant, thereby improving its thermal stability.
基金Project(51007042)supported by the National Natural Science Foundation of China
文摘Small signal instability may cause severe accidents for power system if it can not be dear correctly and timely. How to maintain power system stable under small signal disturbance is a big challenge for power system operators and dispatchers. Time delay existing in signal transmission process makes the problem more complex. Conventional eigenvalue analysis method neglects time delay influence and can not precisely describe power system dynamic behaviors. In this work, a modified small signal stability model considering time varying delay influence was constructed and a new time delay controller was proposed to stabilize power system under disturbance. By Lyapunov-Krasovskii function, the control law in the form of nonlinear matrix inequality (NLMI) was derived. Considering synthesis method limitation for time delay controller at present, both parameter adjustment method by using linear matrix inequality (LMI) solver and iteration searching method by solving nonlinear minimization problem were suggested to design the controller. Simulation tests were carried out on synchronous-machine infinite-bus power system. Satisfactory test results verify the correctness of the proposed model and the feasibility of the stabilization approach.
文摘An adaptive controller of full state feedback for certain cascade nonlinear systems achieving input-to-state stability with respect to unknown bounded disturbance is designed using backstepping and control Lyapunov function (CLF) techniques. We show that unknown bounded disturbance can be estimated by update laws, which requires less information on unknown disturbance, as a part of stabilizing control. The design method achieves the desired property: global robust stability. Our contribution is illustrated with the example of a disturbed pendulum.
文摘Many construction and post-construction problems have been reported in the literature when saline soils have been used without understanding of their abnormal behavior,especially their inferior bearing capacity in the natural condition.The strength of these soils further decreases on soaking.Saline soil deposits cover extensive areas in central Iran and are associated with geotechnical problems such as excessive differential settlement,susceptibility to strength loss and collapse upon wetting.Because of these characteristics,some of the roads constructed on saline soils in Taleghan area have exhibited deterioration in the form of raveling,cracking and landslides.The main objective of this work is to improve the load-bearing capacity of pavements constructed on Taleghan saline soils using lime and micro silica.Soil samples from Hashtgerd-Taleghan road were collected and tested for improving their properties using lime and micro silica at different dosages ranging from 0 to 6%.The load-bearing capacity of stabilized soil mixtures was evaluated using California Bearing Ratio(CBR) and unconfined compressive strength tests.The test results indicate that the lime improves the performance of soil significantly.The addition of 2% lime with 3% micro silica has satisfied the strength-deformation requirements.Therefore,improved soil can be used as a good subbase in flexible pavements.
基金Project(50675234)supported by the National Natural Science Foundation of China
文摘Rapidly solidified Sn-9Zn-0.1Pr(/Nd) alloy foils were prepared by melt-spinning method. Through comparison, the effects of rapid solidification process and 0.1%Pr/Nd(mass fraction) addition on the microstructure, thermodynamic characteristic of Sn-9Zn solder alloy were analyzed. The tensile-shear tests were used to evaluate the mechanical properties of solder/Cu joints. The results show that the rapid solidification process can greatly refine the microstructure of Sn-9Zn-0.1Pr(/Nd) alloys. After rapid solidification, the effects of Pr/Nd addition on microstructure are depressed. The pasty range of the rapidly solidified Sn-Zn-RE solders is also reduced significantly. The mechanical properties of solder/Cu joints are obviously improved using the rapidly solidified Sn-9Zn-0.1Pr(/Nd) solder alloy, which results in the formation of uniform interface. The promotion effect of Nd addition in Sn-9Zn alloy on the interfacial reaction of solder/Cu joint is more remarkable than that of Pr.
基金This project was supported by the National Natural Science Foundation of China (No. 69874015) and Natural Science Foundation of
文摘In this paper, we investigate the decentralized stabilization of some time-varying uncertain large-scale stochastic systems with delays under matching conditions. A type of decentralized controllers with guaranteed stabilization and sub-optimality are also given.