期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Data-Driven Viewpoint for Developing Next-Generation Mg-Ion Solid-State Electrolytes
1
作者 Fang-Ling Yang Ryuhei Sato +5 位作者 Eric Jianfeng Cheng Kazuaki Kisu Qian Wang Xue Jia Shin-ichi Orimo Hao Li 《电化学(中英文)》 CAS 北大核心 2024年第7期38-49,共12页
Magnesium(Mg)is a promising alternative to lithium(Li)as an anode material in solid-state batteries due to its abundance and high theoretical volumetric capacity.However,the sluggish Mg-ion conduction in the lattice o... Magnesium(Mg)is a promising alternative to lithium(Li)as an anode material in solid-state batteries due to its abundance and high theoretical volumetric capacity.However,the sluggish Mg-ion conduction in the lattice of solidstate electrolytes(SSEs)is one of the key challenges that hamper the development of Mg-ion solid-state batteries.Though various Mg-ion SSEs have been reported in recent years,key insights are hard to be derived from a single literature report.Besides,the structure-performance relationships of Mg-ion SSEs need to be further unraveled to provide a more precise design guideline for SSEs.In this viewpoint article,we analyze the structural characteristics of the Mg-based SSEs with high ionic conductivity reported in the last four decades based upon data mining-we provide big-data-derived insights into the challenges and opportunities in developing next-generation Mg-ion SSEs. 展开更多
关键词 Data mining Magnesium-ion solid-state electrolytes All-solid-state batteries Magnesium-ion conductivity
在线阅读 下载PDF
Modification of NASICON electrolyte in solid sodium-ion batteries——A short review
2
作者 WU Si-hao YU Hai-qing +3 位作者 HU Chen-yang FU Yu CHEN Fu-liang LI Wei-jie 《Journal of Central South University》 CSCD 2024年第12期4510-4535,共26页
In recent years,the development and research of electrochemical energy storage systems that can efficiently transform chemical energy into electrical energy with a long service life have become a key area of study.Sod... In recent years,the development and research of electrochemical energy storage systems that can efficiently transform chemical energy into electrical energy with a long service life have become a key area of study.Sodium-ion batteries,leveraging their chemical similarity to lithium-ion batteries,along with their abundant resources and low cost,are seen as a viable alternative to lithium-ion batteries.Additionally,all-solid-state sodium-ion batteries have drawn significant attention due to safety considerations.Among the solid electrolytes for all-solid-state sodium-ion batteries,the NASICON solid-state electrolyte emerges as one of the most promising choices for sodium battery solid electrolytes.However,to date,there has not been a comprehensive review summarizing the existing problems of NASICON electrolyte materials and the corresponding specific modification methods.This review simply summarizes the present issues of NASICON for all-solid-state sodium-ion batteries,such as,the low ionic conductivity,the poor interface stability and compatibility,and the dendrite formation.Then,the corresponding solutions to address these issues are discussed,including the ion doping,the interface modification,the sintering parameters optimization,and the composite electrolytes regulation.Finally,the perspectives of NASICON solid-state electrolyte are discussed. 展开更多
关键词 solid-state sodium-ion batteries NASICON electrolyte ionic conductivities interface stability improvement strategies
在线阅读 下载PDF
Preparation and electrochemical properties of polymer Li-ion battery reinforced by non-woven fabric 被引量:9
3
作者 胡拥军 陈白珍 袁艳 《Journal of Central South University of Technology》 EI 2007年第1期47-50,共4页
A polymer electrolyte based on poly(vinylidene) fluoride-hexafluoropropylene was prepared by evaporating the solvent of dimethyl formamide, and non-woven fabric was used to reinforce the mechanical strength of polymer... A polymer electrolyte based on poly(vinylidene) fluoride-hexafluoropropylene was prepared by evaporating the solvent of dimethyl formamide, and non-woven fabric was used to reinforce the mechanical strength of polymer electrolyte and maintain a good interfacial property between the polymer electrolyte and electrodes. Polymer lithium batteries were assembled by using LiCoO2 as cathode material and lithium foil as anode material. Scanning electron microscopy, alternating current impedance, linear sweep voltammetry and charge-discharge tests were used to study the properties of polymer membrane and polymer Li-ion batteries. The results show that the technics of preparing polymer electrolyte by directly evaporating solvent is simple. The polymer membrane has rich micro-porous structure on both sides and exhibits 280% uptake of electrolyte solution. The electrochemical stability window of this polymer electrolyte is about 5.5 V, and its ionic conductivity at room temperature reaches 0.151 S/m. The polymer lithium battery displays an initial discharge capacity of 138 mA·h/g and discharge plateau of about 3.9 V at 0.2 current rate. After 30 cycles, its loss of discharge capacity is only 2%. When the battery discharges at 0.5 current rate, the voltage plateau is still 3.7 V. The discharge capacities of 0.5 and 1.0 current rates are 96% and 93% of that of 0.1 current rate, respectively. 展开更多
关键词 polymer electrolyte li-ion battery poly(vinylidene) fluoride-hexafluoropropylene ionic conductivity
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部