随着锂电池在动力和储能等领域得到广泛应用,锂电池的寿命问题成为限制其发展的重要桎梏。电池处于存储状态时也会发生性能衰退而影响寿命,因此,研究电池自放电过程中的阻抗变化以表征内部电化学反应与结构相变过程,对于电池寿命模型完...随着锂电池在动力和储能等领域得到广泛应用,锂电池的寿命问题成为限制其发展的重要桎梏。电池处于存储状态时也会发生性能衰退而影响寿命,因此,研究电池自放电过程中的阻抗变化以表征内部电化学反应与结构相变过程,对于电池寿命模型完善有十分重要的意义。基于此,该文通过容量增量曲线对电池容量衰减的内因展开分析;在不同影响因素下自放电过程中电池阻抗谱变化规律的基础上,利用弛豫时间分布法进行理论原理分析;最后,在电池自放电老化过程的原理推导的基础上总结电池容量衰减量随时间的变化规律,并结合实验数据建立不同影响因素下电池容量衰减模型。结果表明,在存储过程中,电池的固体电解质界面(solid electrolyte interface,SEI)膜内阻增大,且存储温度越高、初始充电状态(state of charge,SOC)越大,相应的阻抗增加幅度越大。自放电过程电池老化主要原因是可循环活性锂离子的消耗和SEI膜的生长。同时该文推导出电池容量损失与时间近似呈0.5次方关系,并利用实验数据拟合得到电池在不同初始SOC和不同存储温度影响下的容量变化模型,为锂电池寿命模型预测提供更进一步的参考。展开更多
为降低Li_(1+x)Al_(x)Ti_(2-x)(PO_(4))_(3)(LATP)电解质膜与锂金属负极之间的界面阻抗,抑制LATP与锂金属之间的副反应以及锂枝晶的生长,提高LATP电解质膜的性能,使用PVDF对LATP基电解质膜界面进行修饰,并研究其电化学性能。将LATP陶瓷...为降低Li_(1+x)Al_(x)Ti_(2-x)(PO_(4))_(3)(LATP)电解质膜与锂金属负极之间的界面阻抗,抑制LATP与锂金属之间的副反应以及锂枝晶的生长,提高LATP电解质膜的性能,使用PVDF对LATP基电解质膜界面进行修饰,并研究其电化学性能。将LATP陶瓷粉末与聚氧化乙烯、LIFSI混合均匀后浇筑成膜,将PVDF溶液均匀涂覆在电解质膜表面,干燥得到修饰后的电解质膜。通过电化学实验、充放电实验、表面表征等方法,研究PVDF修饰后电解质膜的性能。结果显示,PVDF影响了LATP的晶体结构,优化了锂离子迁移通道。修饰后电解质膜的室温离子电导率提升,室温下电化学窗口由3.74 V增加到4.10 V,锂离子迁移数由0.915提升到0.978,组装锂金属对称电池在0.05 m A/cm^(2)电流密度下的循环时间从45 h提升到280 h以上,有效抑制了锂枝晶的生长,提升了电解质膜与锂金属界面稳定性。在电流密度0.025、0.050、0.100、0.200 m A/cm^(2)下的极化电压分别为27、60、110、220 m V。在LFP|SSCEs-1|Li全电池中循环超过25圈后形成了良好的SEI界面。从第25圈到第100圈容量保持率为87%,库仑效率始终保持在95%以上。PVDF修饰层提升了LATP电解质膜的电化学性能以及和锂金属界面的稳定性,对全固态锂电池的应用具有积极意义。展开更多
文摘随着锂电池在动力和储能等领域得到广泛应用,锂电池的寿命问题成为限制其发展的重要桎梏。电池处于存储状态时也会发生性能衰退而影响寿命,因此,研究电池自放电过程中的阻抗变化以表征内部电化学反应与结构相变过程,对于电池寿命模型完善有十分重要的意义。基于此,该文通过容量增量曲线对电池容量衰减的内因展开分析;在不同影响因素下自放电过程中电池阻抗谱变化规律的基础上,利用弛豫时间分布法进行理论原理分析;最后,在电池自放电老化过程的原理推导的基础上总结电池容量衰减量随时间的变化规律,并结合实验数据建立不同影响因素下电池容量衰减模型。结果表明,在存储过程中,电池的固体电解质界面(solid electrolyte interface,SEI)膜内阻增大,且存储温度越高、初始充电状态(state of charge,SOC)越大,相应的阻抗增加幅度越大。自放电过程电池老化主要原因是可循环活性锂离子的消耗和SEI膜的生长。同时该文推导出电池容量损失与时间近似呈0.5次方关系,并利用实验数据拟合得到电池在不同初始SOC和不同存储温度影响下的容量变化模型,为锂电池寿命模型预测提供更进一步的参考。
文摘为降低Li_(1+x)Al_(x)Ti_(2-x)(PO_(4))_(3)(LATP)电解质膜与锂金属负极之间的界面阻抗,抑制LATP与锂金属之间的副反应以及锂枝晶的生长,提高LATP电解质膜的性能,使用PVDF对LATP基电解质膜界面进行修饰,并研究其电化学性能。将LATP陶瓷粉末与聚氧化乙烯、LIFSI混合均匀后浇筑成膜,将PVDF溶液均匀涂覆在电解质膜表面,干燥得到修饰后的电解质膜。通过电化学实验、充放电实验、表面表征等方法,研究PVDF修饰后电解质膜的性能。结果显示,PVDF影响了LATP的晶体结构,优化了锂离子迁移通道。修饰后电解质膜的室温离子电导率提升,室温下电化学窗口由3.74 V增加到4.10 V,锂离子迁移数由0.915提升到0.978,组装锂金属对称电池在0.05 m A/cm^(2)电流密度下的循环时间从45 h提升到280 h以上,有效抑制了锂枝晶的生长,提升了电解质膜与锂金属界面稳定性。在电流密度0.025、0.050、0.100、0.200 m A/cm^(2)下的极化电压分别为27、60、110、220 m V。在LFP|SSCEs-1|Li全电池中循环超过25圈后形成了良好的SEI界面。从第25圈到第100圈容量保持率为87%,库仑效率始终保持在95%以上。PVDF修饰层提升了LATP电解质膜的电化学性能以及和锂金属界面的稳定性,对全固态锂电池的应用具有积极意义。