期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Chemical Scissors Tailored Nano‑Tellurium with High‑Entropy Morphology for Efficient Foam‑Hydrogel‑Based Solar Photothermal Evaporators
1
作者 Chenyang Xing Zihao Li +4 位作者 Ziao Wang Shaohui Zhang Zhongjian Xie Xi Zhu Zhengchun Peng 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期149-168,共20页
The development of tellurium(Te)-based semiconductor nanomaterials for efficient light-to-heat conversion may offer an effective means of harvesting sunlight to address global energy concerns.However,the nanosized Te(... The development of tellurium(Te)-based semiconductor nanomaterials for efficient light-to-heat conversion may offer an effective means of harvesting sunlight to address global energy concerns.However,the nanosized Te(nano-Te)materials reported to date suffer from a series of drawbacks,including limited light absorption and a lack of surface structures.Herein,we report the preparation of nano-Te by electrochemical exfoliation using an electrolyzable room-temperature ionic liquid.Anions,cations,and their corresponding electrolytic products acting as chemical scissors can precisely intercalate and functionalize bulk Te.The resulting nano-Te has high morphological entropy,rich surface functional groups,and broad light absorption.We also constructed foam hydrogels based on poly(vinyl alcohol)/nano-Te,which achieved an evaporation rate and energy efficiency of 4.11 kg m^(−2)h^(−1)and 128%,respectively,under 1 sun irradiation.Furthermore,the evaporation rate was maintained in the range 2.5-3.0 kg m^(−2)h^(−1)outdoors under 0.5-1.0 sun,providing highly efficient evaporation under low light conditions. 展开更多
关键词 TELLURIUM High entropy Electrochemical modification solar absorption Evaporation rate
在线阅读 下载PDF
Self-Supporting Nanoporous Copper Film with High Porosity and Broadband Light Absorption for Efficient Solar Steam Generation 被引量:2
2
作者 Bin Yu Yan Wang +1 位作者 Ying Zhang Zhonghua Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第7期57-71,共15页
Solar steam generation(SSG)is a potential technology for freshwater production,which is expected to address the global water shortage problem.Some noble metals with good photothermal conversion performance have receiv... Solar steam generation(SSG)is a potential technology for freshwater production,which is expected to address the global water shortage problem.Some noble metals with good photothermal conversion performance have received wide concerns in SSG,while high cost limits their practical applications for water purification.Herein,a self-supporting nanoporous copper(NP-Cu)film was fabricated by one-step dealloying of a specially designed Al_(98)Cu_(2)precursor with a dilute solid solution structure.In-situ and ex-situ characterizations were performed to reveal the phase and microstructure evolutions during dealloying.The NP-Cu film shows a unique three-dimensional bicontinuous ligament-channel structure with high porosity(94.8%),multi scale-channels and nanoscale ligaments(24.2±4.4nm),leading to its strong broadband absorption over the 200–2500 nm wavelength More importantly,the NP-Cu film exhibits excellent SSG performance with high evaporation rate,superior efficiency and good stability.The strong desalination ability of NP-Cu also manifests its potential applications in seawater desalination.The related mechanism has been rationalized based upon the nanoporous network,localized surface plasmon resonance effect and hydrophilicity. 展开更多
关键词 solar steam generation Nanoporous copper Broadband solar absorption Localized surface plasmon resonance Seawater desalination Dealloying
在线阅读 下载PDF
Highly efficient energy harvest via external rotating magnetic field for oil based nanofluid direct absorption solar collector
3
作者 Debing Wang Wenwen Liang +5 位作者 Zhiheng Zheng Peiyu Jia Yunrui Yan Huaqing Xie Lingling Wang Wei Yu 《Green Energy & Environment》 SCIE CSCD 2021年第2期298-307,共10页
Nanofluids based direct absorption solar collectors(DASCs) are considered as the important alternative for further improve the utilization of solar energy. However the low-quality energy and aggregation of nanoparticl... Nanofluids based direct absorption solar collectors(DASCs) are considered as the important alternative for further improve the utilization of solar energy. However the low-quality energy and aggregation of nanoparticles obstructs their large-scale application. In this work, a new method of using magnetic nanofluids in DASCs is proposed. By this method, not only high-quality energy is got as well as the problems of blockage and corrosion in heat exchanger are well avoided. The result shows that the maximum temperature can reach 98℃ under 3 solar irradiations and the photothermal conversion efficiency can be further increased by 12.8% when the concentration is 500 ppm after adding an external rotating magnetic field. The highest viscosity of working fluid reduced by 21% when the concentration is 500 ppm at 95℃ after separating the Fe_(3)O_(4)@C nanoparticles from the nanofluids via magnetic separation technology. Meanwhile, the obtained pure base liquids with high temperature flow to heat exchanger, which also reduces the flow resistance in pipeline and avoids the problems such as blockage and corrosion in heat exchanger. This research promotes a new way for the efficient utilization of solar energy. 展开更多
关键词 Direct absorption solar collector Magnetic Fe_(3)O_(4)@C-oil nanofluids Magnetic separation technology High-quality energy
在线阅读 下载PDF
Effect of Optical Microcavity on Absorption Behavior of Homo-Tandem Organic Solar Cells
4
作者 李国龙 王浩 +3 位作者 蒙镜蓉 李进 何力军 王鸣魁 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第11期128-131,共4页
The optical microcavity effect of the homo-tandem solar cells is explored utilizing the transfer matrix method. Ultrathin silver can reduce the deadzone effect compared with graphene and PH1000, and leads to a factor ... The optical microcavity effect of the homo-tandem solar cells is explored utilizing the transfer matrix method. Ultrathin silver can reduce the deadzone effect compared with graphene and PH1000, and leads to a factor of 1.07 enhancement for an electrical field in a metal microcavity. The enhancement is considered to be the fact that strong exciton-photon coupling occurs in the microcavity due to ultrathin Ag. On the basis of the optical enhancement effect, optical behaviors are manipulated by varying the microcavity length. It is confirmed that ultrathin silver can serve as an ideal interconnection layer as the active layer is ~ 150nm thick and the thickness ratio between front and rear active layers lies between 1:1 and 1:2. 展开更多
关键词 TH Effect of Optical Microcavity on Absorption Behavior of Homo-Tandem Organic solar Cells ICL
在线阅读 下载PDF
Ground-based remote sensing of atmospheric total column CO_2 and CH_4 by direct sunlight in Hefei
5
作者 程巳阳 徐亮 +6 位作者 高闽光 李胜 金岭 童晶晶 魏秀丽 刘建国 刘文清 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第12期563-569,共7页
Fourier transform spectrometry has played an important role in the three-dimensional greenhouse gas monitoring as the focus of attention on global warming in the past few years. In this paper, a ground-based low-resol... Fourier transform spectrometry has played an important role in the three-dimensional greenhouse gas monitoring as the focus of attention on global warming in the past few years. In this paper, a ground-based low-resolution remote sensing system measuring the total columns of CO2 and CH4 is developed, which tracks the sun automatically and records the spectra in real-time and has the advantages of portability and low cost. A spectral inversion algorithm based on nonlinear least squares spectral fitting procedure for determining the column concentrations of these species is described. Atmospheric transmittance spectra are computed line-by-line in the forward model and observed on-line by direct solar radiation. Also, the wavelength shifts are introduced and the influence of spectral resolution is discussed. Based on this system and algorithm, the vertical columns of O2, CO2, and CH4 are calculated from total atmospheric observation transmittance spectra in Hefei, and the results show that the column averaged dry-air mole fractions of CO2 and CH4 are measured with accuracies of 3.7% and 5%, respectively. Finally, the H2O columns are compared with the results observed by solar radiometer at the same site and the calculated correlation coefficient is 0.92, which proves that this system is suitable for field campaigns and used to monitor the local greenhouse gas sources under the condition of higher accuracy, indirectly. 展开更多
关键词 carbon dioxide methane ground-based remote sensing solar absorption spectroscopy
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部