Microbial biomass represents a relatively small standing stock of nutrients, compared to soil organic matter, but it can act as a labile source of nutrients for plants, a pathway for incorporation of organic matter in...Microbial biomass represents a relatively small standing stock of nutrients, compared to soil organic matter, but it can act as a labile source of nutrients for plants, a pathway for incorporation of organic matter into the soil, and a temporary sink for nutrients. This review describes several factors controlling the dynamics of soil microbial biomass. These factors mainly include organic carbon and nitrogen limitation, residue and nutrient management, differences in plant species, soil texture, soil moisture and temperature. On the basis of detailed analysis, it is reasonable that future research would be focused on the impact of land use change on soil MB in tropical and subtropical ecosystems.展开更多
Soil microbial biomass is an important indicator to measure the dynamic changes of soil carbon pool.It is of great signifi cance to understand the dynamics of soil microbial biomass in plantation for rational manageme...Soil microbial biomass is an important indicator to measure the dynamic changes of soil carbon pool.It is of great signifi cance to understand the dynamics of soil microbial biomass in plantation for rational management and cultivation of plantation.In order to explore the temporal dynamics and infl uencing factors of soil microbial biomass of Keteleeria fortunei var.cyclolepis at diff erent stand ages,the plantation of diff erent ages(young forest,5 years;middle-aged forest,22 years;mature forest,40 years)at the Guangxi Daguishan forest station of China were studied to examine the seasonal variation of their microbial biomass carbon(MBC)and microbial biomass nitrogen(MBN)by chloroform fumigation extraction method.It was found that among the forests of diff erent age,MBC and MBN diff ered signifi cantly in the 0–10 cm soil layer,and MBN diff ered signifi cantly in the 10–20 cm soil layer,but there was no signifi cant diff erence in MBC for the 10–20 cm soil layer or in either MBC or MBN for the 20–40 cm soil layer.With increasing maturity of the forest,MBC gradually decreased in the 0–10 cm soil layer and increased fi rstly and then decreased in the 10–20 cm and 20–40 cm soil layers,and MBN increased fi rstly and then decreased in all three soil layers.As the soil depth increased,both MBC and MBN gradually decreased for all three forests.The MBC and MBN basically had the same seasonal variation in all three soil layers of all three forests,i.e.,high in the summer and low in the winter.Correlation analysis showed that MBC was signifi cantly positively correlated with soil organic matter,total nitrogen,and soil moisture,whereas MBN was signifi cantly positively correlated with soil total nitrogen.It showed that soil moisture content was the main factor determining the variation of soil microbial biomass by Redundancy analysis.The results showed that the soil properties changed continuously as the young forest grew into the middle-aged forest,which increased soil microbial biomass and enriched the soil nutrients.However,the soil microbial biomass declined as the middle-age forest continued to grow,and the soil nutrients were reduced in the mature forest.展开更多
Background:Forest restoration has been considered an effective method to increase soil organic carbon(SOC),whereas it remains unclear whether long-term forest restoration will continuously increase SOC.Such large unce...Background:Forest restoration has been considered an effective method to increase soil organic carbon(SOC),whereas it remains unclear whether long-term forest restoration will continuously increase SOC.Such large uncertainties may be mainly due to the limited knowledge on how soil microorganisms will contribute to SOC accumulation over time.Methods:We simultaneously documented SOC,total phospholipid fatty acids(PLFAs),and amino sugars(AS)content across a forest restoration gradient with average stand ages of 14,49,70,and>90 years in southern China.Results:The SOC and AS continuously increased with stand age.The ratio of fungal PLFAs to bacterial PLFAs showed no change with stand age,while the ratio of fungal AS to bacterial AS significantly increased.The total microbial residue-carbon(AS-C)accounted for 0.95-1.66% in SOC across all forest restoration stages,with significantly higher in fungal residue-C(0.68-1.19%)than bacterial residue-C(0.05-0.11%).Furthermore,the contribution of total AS-C to SOC was positively correlated with clay content at 0-10 cm soil layer but negatively related to clay content at 10-20 cm soil layer.Conclusions:These findings highlight the significant contribution of AS-C to SOC accumulation along forest restoration stages,with divergent contributions from fungal residues and bacterial residues.Soil clay content with stand age significantly affects the divergent contributions of AS-C to SOC at two different soil layers.展开更多
Prescribed fire is a common economical and effective forestry practice, and therefore it is important to understand the effects of fire on soil properties for better soil management. We investigated the impacts of low...Prescribed fire is a common economical and effective forestry practice, and therefore it is important to understand the effects of fire on soil properties for better soil management. We investigated the impacts of low-intensity prescribed fire on the microbial and chemical properties of the top soil in a Hungarian oak(Quercus frainetto Ten.) forest. The research focused on microbial soil parameters(microbial soil respiration(RSM), soil microbial biomass carbon(Cmic) and metabolic quotient(qCO2) and chemical topsoil properties(soil acidity(pH),electrical conductivity(EC), carbon(C), nitrogen(N), C/N ratio and exchangeable cations). Mean annual comparisons show significant differences in four parameters(C/N ratio,soil pH, Cmic and qCO2) while monthly comparisons do not reveal any significant differences. Soil pH increased slightly in the burned plots and had a significantly positive correlation with exchangeable cations Mg, Ca, Mn and K.The mean annual C/N ratio was significantly higher in the burned plots(28.5:1) than in the control plots(27.0:1). The mean annual Cmic(0.6 mg g-1) was significantly lower although qCO2(2.5 lg CO2–C mg Cmic h-1) was significantly higher, likely resulting from the microbial response to fire-induced environmental stress. Low-intensity prescribed fire caused very short-lived changes. The annual mean values of C/N ratio, pH, Cmic and qCO2showed significant differences.展开更多
Continuous increases in anthropogenic nitrogen(N) deposition are likely to change soil microbial properties, and ultimately to affect soil carbon(C) storage.Temperate plantation forests play key roles in C sequest...Continuous increases in anthropogenic nitrogen(N) deposition are likely to change soil microbial properties, and ultimately to affect soil carbon(C) storage.Temperate plantation forests play key roles in C sequestration, yet mechanisms underlying the influences of N deposition on soil organic matter accumulation are poorly understood. This study assessed the effect of N addition on soil microbial properties and soil organic matter distribution in a larch(Larix gmelinii) plantation. In a 9-year experiment in the plantation, N was applied at100 kg N ha-1 a-1 to study the effects on soil C and N mineralization, microbial biomass, enzyme activity, and C and N in soil organic matter density fractions, and organic matter chemistry. The results showed that N addition had no influence on C and N contents in whole soil. However,soil C in different fractions responded to N addition differently. Soil C in light fractions did not change with N addition, while soil C in heavy fractions increased significantly. These results suggested that more soil C in heavy fractions was stabilized in the N-treated soils. However,microbial biomass C and N and phenol oxidase activity decreased in the N-treated soils and thus soil C increased in heavy fractions. Although N addition reduced microbial biomass and phenol oxidase activity, it had little effect on soil C mineralization, hydrolytic enzyme activities, d13 C value in soil and C–H stretch, carboxylates and amides, and C–O stretch in soil organic matter chemistry measured by Fourier transform infrared spectra. We conclude that N addition(1) altered microbial biomass and activity without affecting soil C in light fractions and(2) resulted in an increase in soil C in heavy fractions and that this increase was controlled by phenol oxidase activity and soil N availability.展开更多
In the Sudano-Sahelian zone of Burkina Faso, Piliostigma reticulatum (DC) Hochst and Piliostigma thonningii (Schumach) are precursor species of fallow land colonization and they are used by rural villagers. The pr...In the Sudano-Sahelian zone of Burkina Faso, Piliostigma reticulatum (DC) Hochst and Piliostigma thonningii (Schumach) are precursor species of fallow land colonization and they are used by rural villagers. The present study aimed to assess the contribution of Piliostigma species to soil quality improvement. We quantified organic carbon, total nitrogen, soil microbial biomass, soil basal respiration and metabolic quotient from soil samples taken under and outside Piliostigma canopies. We used one-way ANOVA to test for differences in the above parameters between locations (beneath and outside Piliostigma canopies). We recorded increased total organic carbon under Piliostigma from 31%–105% and in total nitrogen from 23%–66%. Microbial biomass was 13%–266% higher beneath canopies as compared to outside canopies. Basal respiration was also higher beneath canopies. The chemical elements varied by class of soil texture. Metabolic quotient (qCO2) was significantly correlated to clay (r = 0.80) and silt (r = 0.79) content. Piliostigma stands produced abundant litter due to their leaf biomass. Thus, they contribute to improved total organic carbon and total nitrogen content in the different phytogeographic zones and improve soil fertility.展开更多
Eucalyptus harvest residues are attractive energy production resources for the forestry industry.However,their removal can have adverse impacts on soil quality and forest productivity,especially in sandy soils.In this...Eucalyptus harvest residues are attractive energy production resources for the forestry industry.However,their removal can have adverse impacts on soil quality and forest productivity,especially in sandy soils.In this study,we assessed the effects of Eucalyptus harvest residue managements with variable intensity on forest productivity and on physical,chemical,and biological indicators of the soil quality.The experiment was conducted in a Quartzipsamment(33 g kg-1clay)planted with Eucalyptus saligna in Barra do Ribeiro in southern Brazil.Before the Eucalyptus was planted,residues from the previous rotation were subjected to five different management treatments:(1)FRM,in which all forest residues(bark,branches,leaves,and litter)were allowed to remain on the soil and only trunk wood was removed;(2)FRMB,in which was identical to FRM except that bark was also removed;(3)FRMBr,in which only trunk wood and branches were removed;(4)FRR,which involved removing all types of residues(bark,branches,leaves,and litter);and,(5)FRRs,in which all forest residues from the previous rotation were removed,and leaves and branches from the new plantation were prevented from falling onto the soil surface using a shade net.Six years after planting,soil samples were collected at four different depths(0-2.5,2.5-5,5-10,and 10-20 cm)to determine 17 soil chemical,physical,and biological indicators.The results were combined into a soil quality index(SQI)using the principal component analysis approach.The SQI reduced by 30%,in the 0-20 cm layer,due to removal of harvest residues from the previous rotation,and collection of litter before it falls on the ground.The main drivers of SQI reduction were the principal components associated with soil organic matter and biological activity.Furthermore,the SQI was positively linearly related to tree height at P<0.01 and to tree diameter at breast height at P=0.07.The adverse impact on soil quality and forest productivity in our study indicates that removal of Eucalyptus harvest residues from sandy soils should be avoided.展开更多
基金This study was supported by the Teaching and Research Award program for MOE P. R. C. (TRAPOYT)
文摘Microbial biomass represents a relatively small standing stock of nutrients, compared to soil organic matter, but it can act as a labile source of nutrients for plants, a pathway for incorporation of organic matter into the soil, and a temporary sink for nutrients. This review describes several factors controlling the dynamics of soil microbial biomass. These factors mainly include organic carbon and nitrogen limitation, residue and nutrient management, differences in plant species, soil texture, soil moisture and temperature. On the basis of detailed analysis, it is reasonable that future research would be focused on the impact of land use change on soil MB in tropical and subtropical ecosystems.
文摘Soil microbial biomass is an important indicator to measure the dynamic changes of soil carbon pool.It is of great signifi cance to understand the dynamics of soil microbial biomass in plantation for rational management and cultivation of plantation.In order to explore the temporal dynamics and infl uencing factors of soil microbial biomass of Keteleeria fortunei var.cyclolepis at diff erent stand ages,the plantation of diff erent ages(young forest,5 years;middle-aged forest,22 years;mature forest,40 years)at the Guangxi Daguishan forest station of China were studied to examine the seasonal variation of their microbial biomass carbon(MBC)and microbial biomass nitrogen(MBN)by chloroform fumigation extraction method.It was found that among the forests of diff erent age,MBC and MBN diff ered signifi cantly in the 0–10 cm soil layer,and MBN diff ered signifi cantly in the 10–20 cm soil layer,but there was no signifi cant diff erence in MBC for the 10–20 cm soil layer or in either MBC or MBN for the 20–40 cm soil layer.With increasing maturity of the forest,MBC gradually decreased in the 0–10 cm soil layer and increased fi rstly and then decreased in the 10–20 cm and 20–40 cm soil layers,and MBN increased fi rstly and then decreased in all three soil layers.As the soil depth increased,both MBC and MBN gradually decreased for all three forests.The MBC and MBN basically had the same seasonal variation in all three soil layers of all three forests,i.e.,high in the summer and low in the winter.Correlation analysis showed that MBC was signifi cantly positively correlated with soil organic matter,total nitrogen,and soil moisture,whereas MBN was signifi cantly positively correlated with soil total nitrogen.It showed that soil moisture content was the main factor determining the variation of soil microbial biomass by Redundancy analysis.The results showed that the soil properties changed continuously as the young forest grew into the middle-aged forest,which increased soil microbial biomass and enriched the soil nutrients.However,the soil microbial biomass declined as the middle-age forest continued to grow,and the soil nutrients were reduced in the mature forest.
基金financially supported by the National Natural Science Foundation of China for Distinguished Young Scholars(41825020)General Program(31870461)+3 种基金the“Hundred Talent Program”of South China Botanical Garden at the Chinese Academy of Sciences(Y761031001)the“Young Top-notch Talent”in Pearl River talent plan of Guangdong Province(2019QN01L763)the Guangdong Basic and Applied Basic Research Foundation(2021A1515012147)the China Scholarships Council(No.202004910605).
文摘Background:Forest restoration has been considered an effective method to increase soil organic carbon(SOC),whereas it remains unclear whether long-term forest restoration will continuously increase SOC.Such large uncertainties may be mainly due to the limited knowledge on how soil microorganisms will contribute to SOC accumulation over time.Methods:We simultaneously documented SOC,total phospholipid fatty acids(PLFAs),and amino sugars(AS)content across a forest restoration gradient with average stand ages of 14,49,70,and>90 years in southern China.Results:The SOC and AS continuously increased with stand age.The ratio of fungal PLFAs to bacterial PLFAs showed no change with stand age,while the ratio of fungal AS to bacterial AS significantly increased.The total microbial residue-carbon(AS-C)accounted for 0.95-1.66% in SOC across all forest restoration stages,with significantly higher in fungal residue-C(0.68-1.19%)than bacterial residue-C(0.05-0.11%).Furthermore,the contribution of total AS-C to SOC was positively correlated with clay content at 0-10 cm soil layer but negatively related to clay content at 10-20 cm soil layer.Conclusions:These findings highlight the significant contribution of AS-C to SOC accumulation along forest restoration stages,with divergent contributions from fungal residues and bacterial residues.Soil clay content with stand age significantly affects the divergent contributions of AS-C to SOC at two different soil layers.
基金supported by Scientific Research Projects Coordination Unit of Istanbul University,Project Number:International Research Projects:IRP-27803,as a part of an international collaboration between Istanbul University,IstanbulTurkey and Korea University,Seoul-Korea
文摘Prescribed fire is a common economical and effective forestry practice, and therefore it is important to understand the effects of fire on soil properties for better soil management. We investigated the impacts of low-intensity prescribed fire on the microbial and chemical properties of the top soil in a Hungarian oak(Quercus frainetto Ten.) forest. The research focused on microbial soil parameters(microbial soil respiration(RSM), soil microbial biomass carbon(Cmic) and metabolic quotient(qCO2) and chemical topsoil properties(soil acidity(pH),electrical conductivity(EC), carbon(C), nitrogen(N), C/N ratio and exchangeable cations). Mean annual comparisons show significant differences in four parameters(C/N ratio,soil pH, Cmic and qCO2) while monthly comparisons do not reveal any significant differences. Soil pH increased slightly in the burned plots and had a significantly positive correlation with exchangeable cations Mg, Ca, Mn and K.The mean annual C/N ratio was significantly higher in the burned plots(28.5:1) than in the control plots(27.0:1). The mean annual Cmic(0.6 mg g-1) was significantly lower although qCO2(2.5 lg CO2–C mg Cmic h-1) was significantly higher, likely resulting from the microbial response to fire-induced environmental stress. Low-intensity prescribed fire caused very short-lived changes. The annual mean values of C/N ratio, pH, Cmic and qCO2showed significant differences.
基金supported by the National Basic Research Program of China(2012CB416903)the National Natural Science Foundation of China(31570600)
文摘Continuous increases in anthropogenic nitrogen(N) deposition are likely to change soil microbial properties, and ultimately to affect soil carbon(C) storage.Temperate plantation forests play key roles in C sequestration, yet mechanisms underlying the influences of N deposition on soil organic matter accumulation are poorly understood. This study assessed the effect of N addition on soil microbial properties and soil organic matter distribution in a larch(Larix gmelinii) plantation. In a 9-year experiment in the plantation, N was applied at100 kg N ha-1 a-1 to study the effects on soil C and N mineralization, microbial biomass, enzyme activity, and C and N in soil organic matter density fractions, and organic matter chemistry. The results showed that N addition had no influence on C and N contents in whole soil. However,soil C in different fractions responded to N addition differently. Soil C in light fractions did not change with N addition, while soil C in heavy fractions increased significantly. These results suggested that more soil C in heavy fractions was stabilized in the N-treated soils. However,microbial biomass C and N and phenol oxidase activity decreased in the N-treated soils and thus soil C increased in heavy fractions. Although N addition reduced microbial biomass and phenol oxidase activity, it had little effect on soil C mineralization, hydrolytic enzyme activities, d13 C value in soil and C–H stretch, carboxylates and amides, and C–O stretch in soil organic matter chemistry measured by Fourier transform infrared spectra. We conclude that N addition(1) altered microbial biomass and activity without affecting soil C in light fractions and(2) resulted in an increase in soil C in heavy fractions and that this increase was controlled by phenol oxidase activity and soil N availability.
文摘In the Sudano-Sahelian zone of Burkina Faso, Piliostigma reticulatum (DC) Hochst and Piliostigma thonningii (Schumach) are precursor species of fallow land colonization and they are used by rural villagers. The present study aimed to assess the contribution of Piliostigma species to soil quality improvement. We quantified organic carbon, total nitrogen, soil microbial biomass, soil basal respiration and metabolic quotient from soil samples taken under and outside Piliostigma canopies. We used one-way ANOVA to test for differences in the above parameters between locations (beneath and outside Piliostigma canopies). We recorded increased total organic carbon under Piliostigma from 31%–105% and in total nitrogen from 23%–66%. Microbial biomass was 13%–266% higher beneath canopies as compared to outside canopies. Basal respiration was also higher beneath canopies. The chemical elements varied by class of soil texture. Metabolic quotient (qCO2) was significantly correlated to clay (r = 0.80) and silt (r = 0.79) content. Piliostigma stands produced abundant litter due to their leaf biomass. Thus, they contribute to improved total organic carbon and total nitrogen content in the different phytogeographic zones and improve soil fertility.
基金CMPC,Fapergs(Innovation and Technology Network of Low Carbon Agriculture and adapted to Climate Change in Rio Grande do Sul State)CNPq+3 种基金RCGI(Research Centre for Greenhouse Gas Innovation—USP)FAPESPShell BrasilANP。
文摘Eucalyptus harvest residues are attractive energy production resources for the forestry industry.However,their removal can have adverse impacts on soil quality and forest productivity,especially in sandy soils.In this study,we assessed the effects of Eucalyptus harvest residue managements with variable intensity on forest productivity and on physical,chemical,and biological indicators of the soil quality.The experiment was conducted in a Quartzipsamment(33 g kg-1clay)planted with Eucalyptus saligna in Barra do Ribeiro in southern Brazil.Before the Eucalyptus was planted,residues from the previous rotation were subjected to five different management treatments:(1)FRM,in which all forest residues(bark,branches,leaves,and litter)were allowed to remain on the soil and only trunk wood was removed;(2)FRMB,in which was identical to FRM except that bark was also removed;(3)FRMBr,in which only trunk wood and branches were removed;(4)FRR,which involved removing all types of residues(bark,branches,leaves,and litter);and,(5)FRRs,in which all forest residues from the previous rotation were removed,and leaves and branches from the new plantation were prevented from falling onto the soil surface using a shade net.Six years after planting,soil samples were collected at four different depths(0-2.5,2.5-5,5-10,and 10-20 cm)to determine 17 soil chemical,physical,and biological indicators.The results were combined into a soil quality index(SQI)using the principal component analysis approach.The SQI reduced by 30%,in the 0-20 cm layer,due to removal of harvest residues from the previous rotation,and collection of litter before it falls on the ground.The main drivers of SQI reduction were the principal components associated with soil organic matter and biological activity.Furthermore,the SQI was positively linearly related to tree height at P<0.01 and to tree diameter at breast height at P=0.07.The adverse impact on soil quality and forest productivity in our study indicates that removal of Eucalyptus harvest residues from sandy soils should be avoided.