期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
RFC:a feature selection algorithm for software defect prediction 被引量:2
1
作者 XU Xiaolong CHEN Wen WANG Xinheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第2期389-398,共10页
Software defect prediction(SDP)is used to perform the statistical analysis of historical defect data to find out the distribution rule of historical defects,so as to effectively predict defects in the new software.How... Software defect prediction(SDP)is used to perform the statistical analysis of historical defect data to find out the distribution rule of historical defects,so as to effectively predict defects in the new software.However,there are redundant and irrelevant features in the software defect datasets affecting the performance of defect predictors.In order to identify and remove the redundant and irrelevant features in software defect datasets,we propose ReliefF-based clustering(RFC),a clusterbased feature selection algorithm.Then,the correlation between features is calculated based on the symmetric uncertainty.According to the correlation degree,RFC partitions features into k clusters based on the k-medoids algorithm,and finally selects the representative features from each cluster to form the final feature subset.In the experiments,we compare the proposed RFC with classical feature selection algorithms on nine National Aeronautics and Space Administration(NASA)software defect prediction datasets in terms of area under curve(AUC)and Fvalue.The experimental results show that RFC can effectively improve the performance of SDP. 展开更多
关键词 software defect prediction(SDP) feature selection CLUSTER
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部