在开源软件和开源平台中,开发人员可以通过提交issue来记录所发现的软件错误或提出新功能需求.由于缺乏经验、专业水平有限等原因,用户可能无法对issue内容进行准确有效地总结,导致issue标题质量较低,进而降低issue的解决效率.此外,现有...在开源软件和开源平台中,开发人员可以通过提交issue来记录所发现的软件错误或提出新功能需求.由于缺乏经验、专业水平有限等原因,用户可能无法对issue内容进行准确有效地总结,导致issue标题质量较低,进而降低issue的解决效率.此外,现有的issue标题自动生成方法主要面向GitHub等英文开源平台,当应用在Gitee等国产开源平台时表现不佳.同时,现有方法主要使用issue主体描述作为输入,忽略了issue中的代码片段等重要信息.为此,本文提出一种面向Gitee平台的issue标题自动生成方法GITG(Gitee Issue Title Generation),针对包含中文和英文文本的issue,使用构建的Gitee issue数据集对支持中文的预训练模型Chinese BART(Bidirectional and Auto-Regressive Transformers)进行微调,利用issue主体描述和代码片段的双模态信息来自动生成issue标题.为验证GITG的有效性,构建了包含18242个Gitee issue样本的数据集.实验结果表明,GITG在ROUGE-1、ROUGE-2和ROUGE-L指标上相较于iTAPE和iTiger分别至少提升了13.09%、10.18%和12.84%,在BLEU和METEOR指标上同样取得了性能提升.人工评价结果表明,GITG生成标题的平均得分在整体分数、流畅性、信息性和简洁性4个评价指标上相较iTAPE和iTiger分别至少提升了26.7%、20.8%、24.2%和20.0%.展开更多
文摘在开源软件和开源平台中,开发人员可以通过提交issue来记录所发现的软件错误或提出新功能需求.由于缺乏经验、专业水平有限等原因,用户可能无法对issue内容进行准确有效地总结,导致issue标题质量较低,进而降低issue的解决效率.此外,现有的issue标题自动生成方法主要面向GitHub等英文开源平台,当应用在Gitee等国产开源平台时表现不佳.同时,现有方法主要使用issue主体描述作为输入,忽略了issue中的代码片段等重要信息.为此,本文提出一种面向Gitee平台的issue标题自动生成方法GITG(Gitee Issue Title Generation),针对包含中文和英文文本的issue,使用构建的Gitee issue数据集对支持中文的预训练模型Chinese BART(Bidirectional and Auto-Regressive Transformers)进行微调,利用issue主体描述和代码片段的双模态信息来自动生成issue标题.为验证GITG的有效性,构建了包含18242个Gitee issue样本的数据集.实验结果表明,GITG在ROUGE-1、ROUGE-2和ROUGE-L指标上相较于iTAPE和iTiger分别至少提升了13.09%、10.18%和12.84%,在BLEU和METEOR指标上同样取得了性能提升.人工评价结果表明,GITG生成标题的平均得分在整体分数、流畅性、信息性和简洁性4个评价指标上相较iTAPE和iTiger分别至少提升了26.7%、20.8%、24.2%和20.0%.