期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Fuzzy smooth support vector machine with different smooth functions 被引量:5
1
作者 Chuandong Qin Sanyang Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第3期460-466,共7页
Smooth support vector machine (SSVM) changs the normal support vector machine (SVM) into the unconstrained op- timization by using the smooth sigmoid function. The method can be solved under the Broyden-Fletcher-G... Smooth support vector machine (SSVM) changs the normal support vector machine (SVM) into the unconstrained op- timization by using the smooth sigmoid function. The method can be solved under the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm and the Newdon-Armijio (NA) algorithm easily, however the accuracy of sigmoid function is not as good as that of polyno- mial smooth function. Furthermore, the method cannot reduce the influence of outliers or noise in dataset. A fuzzy smooth support vector machine (FSSVM) with fuzzy membership and polynomial smooth functions is introduced into the SVM. The fuzzy member- ship considers the contribution rate of each sample to the optimal separating hyperplane and makes the optimization problem more accurate at the inflection point. Those changes play a positive role on trials. The results of the experiments show that those FSSVMs can obtain a better accuracy and consume the shorter time than SSVM and lagrange support vector machine (LSVM). 展开更多
关键词 smooth support vector machine (SSVM) fuzzy sig- moid function polynomial smooth function fuzzy membership Broyden-Fletcher-Gddfarb-Shanno (BFGS).
在线阅读 下载PDF
Modulation recognition of communication signals based on SCHKS-SSVM 被引量:5
2
作者 Xiaolin Zhang Jian Chen Zhiguo Sun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第4期627-633,共7页
A novel modulation recognition algorithm is proposed by introducing a Chen-Harker-Kanzow-Smale (CHKS) smooth function into the C-support vector machine deformation algorithm. A set of seven characteristic parameters i... A novel modulation recognition algorithm is proposed by introducing a Chen-Harker-Kanzow-Smale (CHKS) smooth function into the C-support vector machine deformation algorithm. A set of seven characteristic parameters is selected from a range of parameters of communication signals including instantaneous amplitude, phase, and frequency. And the Newton-Armijo algorithm is utilized to train the proposed algorithm, namely, smooth CHKS smooth support vector machine (SCHKS-SSVM). Compared with the existing algorithms, the proposed algorithm not only solves the non-differentiable problem of the second order objective function, but also reduces the recognition error. It significantly improves the training speed and also saves a large amount of storage space through large-scale sorting problems. The simulation results show that the recognition rate of the algorithm can batch training. Therefore, the proposed algorithm is suitable for solving the problem of high dimension and its recognition can exceed 95% when the signal-to-noise ratio is no less than 10 dB. 展开更多
关键词 communication signal modulation recognition support vector machine smooth function
在线阅读 下载PDF
New family of piecewise smooth support vector machine 被引量:3
3
作者 Qing Wu Leyou Zhang Wan Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第3期618-625,共8页
Support vector machines (SVMs) have been extensively studied and have shown remarkable success in many applications. A new family of twice continuously differentiable piecewise smooth functions are used to smooth th... Support vector machines (SVMs) have been extensively studied and have shown remarkable success in many applications. A new family of twice continuously differentiable piecewise smooth functions are used to smooth the objective function of uncon- strained SVMs. The three-order piecewise smooth support vector machine (TPWSSVMd) is proposed. The piecewise functions can get higher and higher approximation accuracy as required with the increase of parameter d. The global convergence proof of TPWSSVMd is given with the rough set theory. TPWSSVMd can efficiently handle large scale and high dimensional problems. Nu- merical results demonstrate TPWSSVMa has better classification performance and learning efficiency than other competitive base- lines. 展开更多
关键词 support vector machine (SVM) piecewise smooth function smooth technique bound of convergence.
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部