In this article, we use penalized spline to estimate the hazard function from a set of censored failure time data. A new approach to estimate the amount of smoothing is provided. Under regularity conditions we establi...In this article, we use penalized spline to estimate the hazard function from a set of censored failure time data. A new approach to estimate the amount of smoothing is provided. Under regularity conditions we establish the consistency and the asymptotic normality of the penalized likelihood estimators. Numerical studies and an example are conducted to evaluate the performances of the new procedure.展开更多
针对快速扩展随机树(rapidly-exploring random tree,RRT)算法在无人机路径规划过程中采样次数多、生成路径曲折等问题,提出了一种将路径重规划策略和平滑度优化相结合的路径规划算法。首先,通过重新构造采样区域降低RRT算法采样次数,...针对快速扩展随机树(rapidly-exploring random tree,RRT)算法在无人机路径规划过程中采样次数多、生成路径曲折等问题,提出了一种将路径重规划策略和平滑度优化相结合的路径规划算法。首先,通过重新构造采样区域降低RRT算法采样次数,利用目标偏向寻优策略为RRT算法添加导向性;其次,在筛选初始航迹点的同时引入无人机性能约束;然后,利用B样条对重规划路径进行平滑处理;最后,利用Matlab对所提出的算法进行仿真实验。实验结果为平均采样次数为386次,平均运行时间为0.43 s,平均航迹距离为1392.16(无量纲),表明了算法可有效降低采样次数并改善路径平滑性。展开更多
基金supported by the Natural Science Foundation of China(10771017,10971015,10231030)Key Project to Ministry of Education of the People’s Republic of China(309007)
文摘In this article, we use penalized spline to estimate the hazard function from a set of censored failure time data. A new approach to estimate the amount of smoothing is provided. Under regularity conditions we establish the consistency and the asymptotic normality of the penalized likelihood estimators. Numerical studies and an example are conducted to evaluate the performances of the new procedure.
文摘针对快速扩展随机树(rapidly-exploring random tree,RRT)算法在无人机路径规划过程中采样次数多、生成路径曲折等问题,提出了一种将路径重规划策略和平滑度优化相结合的路径规划算法。首先,通过重新构造采样区域降低RRT算法采样次数,利用目标偏向寻优策略为RRT算法添加导向性;其次,在筛选初始航迹点的同时引入无人机性能约束;然后,利用B样条对重规划路径进行平滑处理;最后,利用Matlab对所提出的算法进行仿真实验。实验结果为平均采样次数为386次,平均运行时间为0.43 s,平均航迹距离为1392.16(无量纲),表明了算法可有效降低采样次数并改善路径平滑性。