The study or pore characteristics is or great importance in reservoir evaluation,especially in deeply buried s andstone.It controls the storage mechanism and reservoir fluid properties of the permeable horizons.The fi...The study or pore characteristics is or great importance in reservoir evaluation,especially in deeply buried s andstone.It controls the storage mechanism and reservoir fluid properties of the permeable horizons.The first member of Eocene Shahejie Formation(Esl)sandstone is classified as feldspathic litharenite and lithic arkose.The present research investigates the pore characteristics and reservoir features of the deeply buried sandstone reservoir of Esl member of Shahejie Formation.The techniques including thin-section petrography,mercury injection capillary pressure(MICP),scanning electron microscopy and laser scanning confocal microscope images were used to demarcate the pores including primary intergranular pores and secondary intergranular,intragranular,dissolution and fracture pores.Mercury injection test and routine core analysis were led to demarcate the pore network characteristics of the studied reservoir.Pore size and pore throat size distribution are acquired from mercury injection test.Porosity values range from 0.5%to 30%,and permeability ranges 0.006-7000 mD.Pore radii of coarse-grained sandstone and fine-grained sandstone range from 0.2 to>4μm and 1 nm to 1.60μm,respectively,by MICP analysis.The mineral composition also plays an important role in protecting the pores with pressure from failure.Fractured sandstone and coarse-grained sandstone consist of large and interconnected pores that enhance the reservoir porosity and permeability,whereas fine-grained sandstone and siltstone consist of numerous pores but not well interconnected,and so they consist of high porosity with low permeability.展开更多
The weighted-sum-of-gray-gas(WSGG)model and Mie theory are applied to study the influents of particle size on the radiative transfer in high temperature homogeneous gas-particle mixtures,such as the flame in aero-engi...The weighted-sum-of-gray-gas(WSGG)model and Mie theory are applied to study the influents of particle size on the radiative transfer in high temperature homogeneous gas-particle mixtures,such as the flame in aero-engine combustor.The radiative transfer equation is solved by the finite volume method.The particle size is assumed to obey uniform distribution and logarithmic normal(L-N)distribution,respectively.Results reveal that when particle size obeys uniform distribution,increasing particle size with total particle volume fraction fvunchanged will result in the decreasing of the absolute value of radiative heat transfer properties,and the effect of ignoring particle scattering will also be weakened.Opposite conclusions can be obtained when total particle number concentration N0 is unchanged.Moreover,if particle size obeys L-N distribution,increasing the narrowness indexσor decreasing the characteristic diameter Dˉwith the total particle volume fraction fvunchanged will increase the absolute value of radiative heat transfer properties.With total particle number concentration N0 unchanged,opposite conclusions for radiative heat source and incident radiation terms can be obtained except for radiative heat flux term.As a whole,the effects of particle size on the radiative heat transfer in the high-temperature homogeneous gas-particle mixtures are complicated,and the particle scattering cannot be ignoring just according to the particle size.展开更多
Scholars often see the gas adsorption technique as a straight-to-interpret technique and adopt the pore size distribution(PSD)given by the gas adsorption technique directly to interpret pore-structure-related issues.T...Scholars often see the gas adsorption technique as a straight-to-interpret technique and adopt the pore size distribution(PSD)given by the gas adsorption technique directly to interpret pore-structure-related issues.The oversimplification of interpreting shale PSD based on monogeometric thermodynamic models leads to apparent bias to the realistic pore network.This work aims at establishing a novel thermodynamic model for shale PSD interpretation.We simplified the pore space into two geometric types—cylinder-shaped and slit-shaped.Firstly,Low-temperature Nitrogen Adsorption data were analyzed utilizing two monogeometric models(cylindrical and slit)to generate PSD_(cyl).and PSD_(slit);Secondly,pore geometric segmentation was carried out using Watershed by flooding on typical SEM images to obtain the ratio of slit-shaped(∅_(s))and cylinder-shaped pores(∅_(c)).Combining the results of the two,we proposed a novel hybrid model.We performed pyrolysis,XRD,FE-SEM observation,quantitative comparison with the results obtained by the DFT model,and fractal analysis to discuss the validity of the obtained PSD_(Hybrid).The results showed that:the hybrid model proposed in this work could better reflect the real geometry of pore space and provide a more realistic PSD;compared with thermodynamic monogeometric models,PSD obtained from the hybrid model are closer to that from the DFT model,with an improvement in the deviation from the DFT model from 5.06%to 68.88%.The proposed hybrid model has essential application prospects for better interpretation of shale pore space.It is also worth noting that we suggest applying the proposed hybrid model for PSD analysis in the range of 5-100 nm.展开更多
The angular light-scattering measurement(ALSM) method combined with an improved artificial bee colony algorithm is introduced to determine aerosol optical constants and aerosol size distribution(ASD) simultaneousl...The angular light-scattering measurement(ALSM) method combined with an improved artificial bee colony algorithm is introduced to determine aerosol optical constants and aerosol size distribution(ASD) simultaneously. Meanwhile, an optimized selection principle of the ALSM signals based on the sensitivity analysis and principle component analysis(PCA)is proposed to improve the accuracy of the retrieval results. The sensitivity analysis of the ALSM signals to the optical constants or characteristic parameters in the ASD is studied first to find the optimized selection region of measurement angles. Then, the PCA is adopted to select the optimized measurement angles within the optimized selection region obtained by sensitivity analysis. The investigation reveals that, compared with random selection measurement angles, the optimized selection measurement angles can provide more useful measurement information to ensure the retrieval accuracy. Finally,the aerosol optical constants and the ASDs are reconstructed simultaneously. The results show that the retrieval accuracy of refractive indices is better than that of absorption indices, while the characteristic parameters in ASDs have similar retrieval accuracy. Moreover, the retrieval accuracy in studying L-N distribution is a little better than that in studying Gamma distribution for the difference of corresponding correlation coefficient matrixes of the ALSM signals. All the results confirm that the proposed technique is an effective and reliable technique in estimating the aerosol optical constants and ASD simultaneously.展开更多
Several industrial coal processes are largely determined by the distribution of particle sizes in their feed.Currently these parameters are measured by manual sampling,which is time consuming and cannot provide real t...Several industrial coal processes are largely determined by the distribution of particle sizes in their feed.Currently these parameters are measured by manual sampling,which is time consuming and cannot provide real time feedback for automatic control purposes.In this paper,an approach using image segmentation on images of overlapped coal particles is described.The estimation of the particle size distribution by number is also described.The particle overlap problem was solved using image enhancement algorithms that converted those image parts representing material in lower layers to black.Exponential high-pass filter(EHPF) algorithms were used to remove the texture from particles on the surface.Finally,the edges of the surface particles were identified by morphological edge detection.These algorithms are described in detail as is the method of extracting the coal particle size.Tests indicate that using more coal images gives a higher accuracy estimate.The positive absolute error of 50 random tests was consistently less than 2.5% and the errors were reduced as the size of the fraction increased.展开更多
Compressing supercapacitor(SCs)electrode is essential for improving the energy storage characteristics and minimizing ions’distance travel,faradaic reactions,and overall ohmic resistance.Studies comprising the ion dy...Compressing supercapacitor(SCs)electrode is essential for improving the energy storage characteristics and minimizing ions’distance travel,faradaic reactions,and overall ohmic resistance.Studies comprising the ion dynamics in SC electrodes under compression are still rare.So,the ionic dynamics of five aqueous electrolytes in electrodes under compression were studied in this work for tracking electrochemical and structural changes under mechanical stress.A superionic state is formed when the electrode is compressed until the micropores match the dimensions with the electrolyte’s hydrated ion sizes,which increases the capacitance.If excessive compression is applied,the accessible pore regions decrease,and the capacitance drops.Hence,as the studied hydrated ions have different dimensions,the match between ion/pore sizes differs.To the LiOH and NaClO4electrolytes,increasing the pressure from 60 to 120 and 100 PSI raised the capacitance from 13.5 to 35.2 F g^(-1)and 30.9 to 39.0 F g^(-1),respectively.So,the KOH electrolyte with the lowest and LiCl with the biggest combination of hydrated ion size have their point of maximum capacitance(39.5 and 36.7F g^(-1))achieved at 140 and 80 PSI,respectively.To LiCl and KCl electrolytes,overcompression causes a drop in capacitance higher than 23%.展开更多
Based on the laser diffraction and Shifrin transform,the measurement method of particle size distribution has been improved extensively.While in real measurements,some noise peaks exist in the inversion data and are e...Based on the laser diffraction and Shifrin transform,the measurement method of particle size distribution has been improved extensively.While in real measurements,some noise peaks exist in the inversion data and are easily to be misread as particle distribution peaks.The improved method used a truncation function as a filter is hard to distinguish adjacent peaks.Here,by introducing the bimodal resolution criterion,the filter function is optimized,and to a quasi truncation function with the optimized filter function is studied to achieve optimal bimodal resolution and to remove noise peaks.This new quasi truncation function fits multimode distribution very well.By combining the quasi truncation function with Shifrin transform,noise peaks are removed well and the adjacent peaks are distinguished clearly.Finally,laser diffraction experiments are conducted and the particle size distribution is analyzed by adoping the method.The results show that the quasi truncation function has better bimodal resolution than the truncation function.Generally,by combining the quasi truncation function with the Shifrin transform,in particle size distribution measurements with laser diffraction,the bimodal resolution is greatly increased and the noise is removed well.And the results can restore the original distribution perfectly.Therefore,the new method with combination of the quasi truncation function and the Shifrin transform provides a feasible and effective way to measure the multimode particle size distribution by laser diffraction.展开更多
The results of measurements conducted to determine the number and mass concentration of particles emitted from the liquefied natural gas (LNG) fueled spark ignition engines are presented. Particle size distributions...The results of measurements conducted to determine the number and mass concentration of particles emitted from the liquefied natural gas (LNG) fueled spark ignition engines are presented. Particle size distributions were measured at different speeds, different loads and ESC cycles. The nanoparticles with diameter smaller than 39 nm, measured by the electrical low-pressure impactor (ELPI), are dominant in number con- centration that is nearly 92.7 % of the total number of the emitted particles at the peak point. As for the mass of emission particle, it is shown that the mass of the particles greater than 1.2μm is more than 65 % that of the emitted particles.展开更多
Particle size distribution of coarse aggregates through mechanical sieving gives results in terms of cumu- lative mass percent. But digital image processing generated size distribution of particles, while being fast a...Particle size distribution of coarse aggregates through mechanical sieving gives results in terms of cumu- lative mass percent. But digital image processing generated size distribution of particles, while being fast and accurate, is often expressed in terms of area function or number of particles. In this paper, a mass model is developed which converts the image obtained size distribution to mass-wise distribution, mak- ing it readily comparable to mechanical sieving data. The concept of weight/particle ratio is introduced for mass reconstruction from 2D images of particle aggregates. Using this mass model, the effects of several particle shape parameters (such as major axis, minor axis, and equivalent diameter) on sieve-size of the particles is studied. It is shown that the sieve-size of a particle strongly depend upon the shape param- eters, 91% of its variation being explained by major axis, minor axis, bounding box length and equivalent diameter. Furthermore, minor axis gives an overall accurate estimate of particle sieve-size, error in mean size (D-50) being just 0.4%. However, sieve-size of smaller particles (〈20 ram) strongly depends upon the length of the smaller arm of the bounding box enclosing them and sieve-sizes of larger particles (〉20 mm) are highly correlated to their equivalent diameters. Multiple linear regression analysis has been used to generate overall mass-wise particle size distribution, considering the influences of all these shape parameters on particle sieve-size. Multiple linear regression generated overall mass-wise particle size distribution shows a strong correlation with sieve generated data. The adjusted R-square value of the regression analysis is found to be 99 percent (w.r,t cumulative frequency). The method proposed in this paper provides a time-efficient way of producing accurate (up to 99%) mass-wise PSD using digital image processing and it can be used effectively to renlace the mechanical sieving.展开更多
For two-dimensional unmagnetized dusty plasmas with many different dust grain species, a Kadomtsev-Petviashvili (KP) equation, a modified KP (mKP) equation and a coupled KP(cKP) equation for small, but finite am...For two-dimensional unmagnetized dusty plasmas with many different dust grain species, a Kadomtsev-Petviashvili (KP) equation, a modified KP (mKP) equation and a coupled KP(cKP) equation for small, but finite amplitude dustacoustic solitary waves are obtained for different physical conditions respectively. The influence of an arbitrary dust size distribution described by a polynomial expressed function on the properties of dust-acoustic solitary waves is investigated numerically. How dust size distribution affects the sign and the magnitude of nonlinear coefficient A (D) of KP (mKP) equation is also discussed in detail. It is noted that whether a compressive or a rarefactive solitary wave exists depends on the dust size distribution in some dusty plasmas.展开更多
Self-assembled lnAs quantum dots (QDs) are grown on vicinal GaAs (100) substrates by using metal-organic chemical vapour deposition (MOCVD). An abnormal temperature dependence of bimodal size distribution of InA...Self-assembled lnAs quantum dots (QDs) are grown on vicinal GaAs (100) substrates by using metal-organic chemical vapour deposition (MOCVD). An abnormal temperature dependence of bimodal size distribution of InAs quantum dots is found. As the temperature increases, the density of the small dots grows larger while the density of the large dots turns smaller, which is contrary to the evolution of QDs on exact GaAs (100) substrates. This trend is explained by taking into account the presence of multiatoinic steps on the substrates. The optical properties of InAs QDs on vicinal GaAs(100) substrates are also studied by photoluminescence (PL) . It is found that dots on a vicinal substrate have a longer emission wavelength, a narrower PL line width and a much larger PL intensity.展开更多
The effect of particle size distribution on the field and temperature dependence of the hysteresis loop features like coercivity(HC), remanence(MR), and blocking temperature(TB) is simulated for an ensemble of s...The effect of particle size distribution on the field and temperature dependence of the hysteresis loop features like coercivity(HC), remanence(MR), and blocking temperature(TB) is simulated for an ensemble of single domain ferromagnetic nanoparticles with uniaxial anisotropy. Our simulations are based on the two-state model for T 〈 TB and the metropolis Monte-Carlo method for T 〉 TB. It is found that the increase in the grain size significantly enhances HC and TB. The presence of interparticle exchange interaction in the system suppresses HC but causes MRto significantly increase.Our results show that the parameters associated with the particle size distribution(D(d,δ)) such as the mean particle size d and standard-deviation δ play key roles in the magnetic behavior of the system.展开更多
Based on the aircraft observations in the summer of 2003, we have studied the aerodynamic size distributions of airborne particles at altitudes ranging from 400 m to 2800 m over the central and southern areas of Jiang...Based on the aircraft observations in the summer of 2003, we have studied the aerodynamic size distributions of airborne particles at altitudes ranging from 400 m to 2800 m over the central and southern areas of Jiangsu province located in Yangtse River Delta of China. The sizes of airborne particles are measured to be in a range of 0.47- 30 μm with 57 channels, and their number concentrations, surface area concentrations and mass concentrations are also measured. The results show that the concentrations of airborne particles are very low above an altitude of 2000 m and the size distributions present a specific multi-peak mode by using insufficient samples. Below 1000 m, however, the concentrations of particles increase obviously, and their size distribution is similar to that at the ground level. The study also indicates that the concentrations, size distributions and median diameters of airborne particles above and below the boundary layer are very different, displaying different pollution features. Meanwhile, the results also show that the pollution level of airborne particles has a descending tendency with altitude increasing.展开更多
Both linear and nonlinear excitation in dusty plasmas have been investigated including the nonadiabatic dust charge fluctuation and Gaussian size distribution dust particles. A linear dispersion relation and a Kortewe...Both linear and nonlinear excitation in dusty plasmas have been investigated including the nonadiabatic dust charge fluctuation and Gaussian size distribution dust particles. A linear dispersion relation and a Korteweg-de Vries-Burgers equation governing the dust acoustic shock waves are obtained. The relevance of the instability of wave and the wave evolution to the dust size distribution and nonadiabatic dust charge fluctuation is illustrated both analytically and numerically. The numerical results show that the Gaussian size distribution of dust particles and the nonadiabatic dust charge fluctuation have strong common influence on the propagation of both linear and nonlinear excitations.展开更多
Grain size distribution of bed material is an important characteristic for studying evolution of natural river channel by means of experimental ways and numerical modeling of flow and sediment process.In this study,th...Grain size distribution of bed material is an important characteristic for studying evolution of natural river channel by means of experimental ways and numerical modeling of flow and sediment process.In this study,the fractal characteristic of sediment particle has been defined by means of fractal theory based on ana- lyzing the property of grain size distribution of bed material in the river channel.Furthennore,the fractal prop- erty of sediment particle has been applied to judge the process of armorin...展开更多
Measurements of bubble size distribution require the understanding of the acoustic characteristics of the medium.The bubbles show highly nonlinear properties under finite amplitude acoustic excitation,so the acoustic ...Measurements of bubble size distribution require the understanding of the acoustic characteristics of the medium.The bubbles show highly nonlinear properties under finite amplitude acoustic excitation,so the acoustic fields from bubble population are easily observed at the second harmonics as well as at the fundamental frequency,which shows that the nonlinear coefficient increases obviously.The inversion method of bubble size distribution based on nonlinear acoustic effects can peel off the influence of complex environment and obtain the size distribution coefficient information of bubbles more accurately.The previous nonlinear inversion methods of bubble size distribution are mostly based on the nonlinear scattering cross-section characteristics of bubbles.However,the stability of inversion is not high enough.In this paper,we introduce a new acoustic inversion method for bubble size distribution,which is based on the nonlinear coefficients of bubble medium.Compared with other inversion methods based on linear or nonlinear scattering cross section,the inversion method based on nonlinear coefficients of bubble medium proposed in this paper shows good robustness in both simulation and experiment.展开更多
High purity and ultrafine DAAF(u-DAAF)is an emerging insensitive charge in initiators.Although there are many ways to obtain u-DAAF,developing a preparation method with stable operation,accurate control,good quality c...High purity and ultrafine DAAF(u-DAAF)is an emerging insensitive charge in initiators.Although there are many ways to obtain u-DAAF,developing a preparation method with stable operation,accurate control,good quality consistency,equipment miniaturization,and minimum manpower is an inevitable requirement to adapt to the current social technology development trend.Here reported is the microfluidic preparation of u-DAAF with tunable particle size by a passive swirling microreactor.Under the guidance of recrystallization growth kinetics and mixing behavior of fluids in the swirling microreactor,the key parameters(liquid flow rate,explosive concentration and crystallization temperature)were screened and optimized through screening experiments.Under the condition that no surfactant is added and only experimental parameters are controlled,the particle size of recrystallized DAAF can be adjusted from 98 nm to 785 nm,and the corresponding specific surface area is 8.45 m^(2)·g^(-1)to 1.33 m^(2)·g^(-1).In addition,the preparation method has good batch stability,high yield(90.8%-92.6%)and high purity(99.0%-99.4%),indicating a high practical application potential.Electric explosion derived flyer initiation tests demonstrate that the u-DAAF shows an initiation sensitivity much lower than that of the raw DAAF,and comparable to that of the refined DAAF by conventional spraying crystallization method.This study provides an efficient method to fabricate u-DAAF with narrow particle size distribution and high reproducibility as well as a theoretical reference for fabrication of other ultrafine explosives.展开更多
Ultrasonic technology has been intensively studied recently due to its special features. In this paper, an ultrasonic crystallization method was introduced for the preparation of ZnAl-Hydrotalcite-Like compounds (ZnA...Ultrasonic technology has been intensively studied recently due to its special features. In this paper, an ultrasonic crystallization method was introduced for the preparation of ZnAl-Hydrotalcite-Like compounds (ZnAl-HTLcs). Samples with high crystallinity, small particle size and narrow particle size distribution were obtained and fully characterized using conventional techniques of XRD, FT-IR and TGDTA. The results prove that both ultrasonic frequency and ultrasonic power have effects on the sizes of the product particles. By varying the ultrasonic power from 250 W to 88 W, with the ultrasonic frequency fixed at 59 kHz, the median particle size of the samples increased from 0.37 μm to 0.82 μm. By altering the hydrothermal treatment time from 1 h to 5 h at 110 ℃, the median particle size of ZnAl-HTLcs synthesized via ultrasonic crystallization increased from 0.88 μm to 1.11 μm.展开更多
It’s a universal engineering problem to seal micro-cracks of low-permeability argillaceous rock mass by grouting in the fields of civil engineering and mining.This paper achieved the grouting sealing of lowpermeabili...It’s a universal engineering problem to seal micro-cracks of low-permeability argillaceous rock mass by grouting in the fields of civil engineering and mining.This paper achieved the grouting sealing of lowpermeability artificial rocks with the permeability of 0.1–40 mD by adopting silica sol imbibition grouting.The variation characteristics of particle size,viscosity,and contact angle of silica sol during solidification and the pore size distribution of low-permeability artificial rocks were measured,and spontaneous imbibition tests of the artificial rocks were carried out.Finally,combined with the imbibition theory,percolation theory,and fracture medium grouting principle,the silica sol imbibition mechanism of lowpermeability rocks and soil was discussed.The results show that:(1)Silica sol can be injected into artificial rocks with the minimum permeability of 0.1 mD through spontaneous imbibition;(2)The particle size increase of silica sol leads to decreased wettability,affinity,and injectability in grouting materials;and(3)In the range of 0.1–40 mD,the grout absorption first increases and then decreases with increased permeability.The number of large pores and fractures in the rock mass is related to injectability,and the number of small and medium pores is related to the internal driving force of imbibition.This study provides a theoretical basis for silica sol grouting sealing of low-permeability argillaceous rocks and is,therefore,an important reference for application.展开更多
Dry coal separation has been the most significant process in the field of coal beneficiation to date, because of its special advantage of operation with no water consumption. Mineral dry separation research has receiv...Dry coal separation has been the most significant process in the field of coal beneficiation to date, because of its special advantage of operation with no water consumption. Mineral dry separation research has received wide attention, particularly in countries and regions experiencing drought and water shortages. During the process of dense coal gas-solid fluidized bed beneficiation, the material is stratified according to its density; the high density material layer remains at the bed bottom, and thus the high density coarse particle bed becomes an important infuencing factor in fluidized bed stability. In the steady fluidization stage, a small number of large radius bubbles are the direct cause of unsteady fluidization in the tradi- tional fluidized bed. The dispersion effect of the secondary air distribution bed for air flow is mainly apparent in the gas region; when the particle size exceeds 13 mm, the secondary air distribution bed has a synergistic effect on the density stability of the upper fluidized layer. When the particle size is small, especially when less than 6 ram, particles will constantly move, accounting for instability of the secondary air distribution bed and distorting the stability of the upper fluidized bed. Under optimum operation conditions, the probable deviation E of gas-solid separation fluidized with a high density coarse particle layer can be as low as 0.085 g/cm3.展开更多
基金funded by the Natural Science Foundation of China Project(No.41602138)National Science and Technology Special Grant(No.2016ZX05006007)+1 种基金China Postdoctoral Science Foundation-funded Project(2015M580617,2017T100524)the Fundamental Research Funds for the Central Universities(15CX08001A)
文摘The study or pore characteristics is or great importance in reservoir evaluation,especially in deeply buried s andstone.It controls the storage mechanism and reservoir fluid properties of the permeable horizons.The first member of Eocene Shahejie Formation(Esl)sandstone is classified as feldspathic litharenite and lithic arkose.The present research investigates the pore characteristics and reservoir features of the deeply buried sandstone reservoir of Esl member of Shahejie Formation.The techniques including thin-section petrography,mercury injection capillary pressure(MICP),scanning electron microscopy and laser scanning confocal microscope images were used to demarcate the pores including primary intergranular pores and secondary intergranular,intragranular,dissolution and fracture pores.Mercury injection test and routine core analysis were led to demarcate the pore network characteristics of the studied reservoir.Pore size and pore throat size distribution are acquired from mercury injection test.Porosity values range from 0.5%to 30%,and permeability ranges 0.006-7000 mD.Pore radii of coarse-grained sandstone and fine-grained sandstone range from 0.2 to>4μm and 1 nm to 1.60μm,respectively,by MICP analysis.The mineral composition also plays an important role in protecting the pores with pressure from failure.Fractured sandstone and coarse-grained sandstone consist of large and interconnected pores that enhance the reservoir porosity and permeability,whereas fine-grained sandstone and siltstone consist of numerous pores but not well interconnected,and so they consist of high porosity with low permeability.
基金supported by the National Natural Science Foundation of China (No: 51806103)Jiangsu Provincial Natural Science Foundation(No: BK20170800)Open Funds of Aero-engine Thermal Environment and Structure Key Laboratory of Ministry of Industry and Information Technology (No. CEPE2018005)
文摘The weighted-sum-of-gray-gas(WSGG)model and Mie theory are applied to study the influents of particle size on the radiative transfer in high temperature homogeneous gas-particle mixtures,such as the flame in aero-engine combustor.The radiative transfer equation is solved by the finite volume method.The particle size is assumed to obey uniform distribution and logarithmic normal(L-N)distribution,respectively.Results reveal that when particle size obeys uniform distribution,increasing particle size with total particle volume fraction fvunchanged will result in the decreasing of the absolute value of radiative heat transfer properties,and the effect of ignoring particle scattering will also be weakened.Opposite conclusions can be obtained when total particle number concentration N0 is unchanged.Moreover,if particle size obeys L-N distribution,increasing the narrowness indexσor decreasing the characteristic diameter Dˉwith the total particle volume fraction fvunchanged will increase the absolute value of radiative heat transfer properties.With total particle number concentration N0 unchanged,opposite conclusions for radiative heat source and incident radiation terms can be obtained except for radiative heat flux term.As a whole,the effects of particle size on the radiative heat transfer in the high-temperature homogeneous gas-particle mixtures are complicated,and the particle scattering cannot be ignoring just according to the particle size.
基金financially supported by the National Key R&D Program of China(Grant No.2017YFC0603106)the Youth Program of National Natural Science Foundation of China(Grant No.41802148)the State Key Laboratory of Petroleum Resources and Prospecting(Grant No.2462017YJRC025,Grant No.PRP/indep04-1611)
文摘Scholars often see the gas adsorption technique as a straight-to-interpret technique and adopt the pore size distribution(PSD)given by the gas adsorption technique directly to interpret pore-structure-related issues.The oversimplification of interpreting shale PSD based on monogeometric thermodynamic models leads to apparent bias to the realistic pore network.This work aims at establishing a novel thermodynamic model for shale PSD interpretation.We simplified the pore space into two geometric types—cylinder-shaped and slit-shaped.Firstly,Low-temperature Nitrogen Adsorption data were analyzed utilizing two monogeometric models(cylindrical and slit)to generate PSD_(cyl).and PSD_(slit);Secondly,pore geometric segmentation was carried out using Watershed by flooding on typical SEM images to obtain the ratio of slit-shaped(∅_(s))and cylinder-shaped pores(∅_(c)).Combining the results of the two,we proposed a novel hybrid model.We performed pyrolysis,XRD,FE-SEM observation,quantitative comparison with the results obtained by the DFT model,and fractal analysis to discuss the validity of the obtained PSD_(Hybrid).The results showed that:the hybrid model proposed in this work could better reflect the real geometry of pore space and provide a more realistic PSD;compared with thermodynamic monogeometric models,PSD obtained from the hybrid model are closer to that from the DFT model,with an improvement in the deviation from the DFT model from 5.06%to 68.88%.The proposed hybrid model has essential application prospects for better interpretation of shale pore space.It is also worth noting that we suggest applying the proposed hybrid model for PSD analysis in the range of 5-100 nm.
基金Project supported by the Jiangsu Provincial Natural Science Foundation,China(Grant Nos.BK20170800 and BK20160794)the National Natural Science Foundation of China(Grant No.51606095)
文摘The angular light-scattering measurement(ALSM) method combined with an improved artificial bee colony algorithm is introduced to determine aerosol optical constants and aerosol size distribution(ASD) simultaneously. Meanwhile, an optimized selection principle of the ALSM signals based on the sensitivity analysis and principle component analysis(PCA)is proposed to improve the accuracy of the retrieval results. The sensitivity analysis of the ALSM signals to the optical constants or characteristic parameters in the ASD is studied first to find the optimized selection region of measurement angles. Then, the PCA is adopted to select the optimized measurement angles within the optimized selection region obtained by sensitivity analysis. The investigation reveals that, compared with random selection measurement angles, the optimized selection measurement angles can provide more useful measurement information to ensure the retrieval accuracy. Finally,the aerosol optical constants and the ASDs are reconstructed simultaneously. The results show that the retrieval accuracy of refractive indices is better than that of absorption indices, while the characteristic parameters in ASDs have similar retrieval accuracy. Moreover, the retrieval accuracy in studying L-N distribution is a little better than that in studying Gamma distribution for the difference of corresponding correlation coefficient matrixes of the ALSM signals. All the results confirm that the proposed technique is an effective and reliable technique in estimating the aerosol optical constants and ASD simultaneously.
基金the Creative Research Groups Science Fund of the National Natural Science Foundation of China(No.50921002)
文摘Several industrial coal processes are largely determined by the distribution of particle sizes in their feed.Currently these parameters are measured by manual sampling,which is time consuming and cannot provide real time feedback for automatic control purposes.In this paper,an approach using image segmentation on images of overlapped coal particles is described.The estimation of the particle size distribution by number is also described.The particle overlap problem was solved using image enhancement algorithms that converted those image parts representing material in lower layers to black.Exponential high-pass filter(EHPF) algorithms were used to remove the texture from particles on the surface.Finally,the edges of the surface particles were identified by morphological edge detection.These algorithms are described in detail as is the method of extracting the coal particle size.Tests indicate that using more coal images gives a higher accuracy estimate.The positive absolute error of 50 random tests was consistently less than 2.5% and the errors were reduced as the size of the fraction increased.
基金the financial support from the Brazilian funding agencies CNPq(301486/2016-6)FAPESP(2014/02163-7,2017/11958-1,2018/20756-6)the support from Shell。
文摘Compressing supercapacitor(SCs)electrode is essential for improving the energy storage characteristics and minimizing ions’distance travel,faradaic reactions,and overall ohmic resistance.Studies comprising the ion dynamics in SC electrodes under compression are still rare.So,the ionic dynamics of five aqueous electrolytes in electrodes under compression were studied in this work for tracking electrochemical and structural changes under mechanical stress.A superionic state is formed when the electrode is compressed until the micropores match the dimensions with the electrolyte’s hydrated ion sizes,which increases the capacitance.If excessive compression is applied,the accessible pore regions decrease,and the capacitance drops.Hence,as the studied hydrated ions have different dimensions,the match between ion/pore sizes differs.To the LiOH and NaClO4electrolytes,increasing the pressure from 60 to 120 and 100 PSI raised the capacitance from 13.5 to 35.2 F g^(-1)and 30.9 to 39.0 F g^(-1),respectively.So,the KOH electrolyte with the lowest and LiCl with the biggest combination of hydrated ion size have their point of maximum capacitance(39.5 and 36.7F g^(-1))achieved at 140 and 80 PSI,respectively.To LiCl and KCl electrolytes,overcompression causes a drop in capacitance higher than 23%.
基金financially supported by the National Natural Science Foundation of China(No.51376095)the Jiangsu Province Environmental Research Projects(No.2014049)
文摘Based on the laser diffraction and Shifrin transform,the measurement method of particle size distribution has been improved extensively.While in real measurements,some noise peaks exist in the inversion data and are easily to be misread as particle distribution peaks.The improved method used a truncation function as a filter is hard to distinguish adjacent peaks.Here,by introducing the bimodal resolution criterion,the filter function is optimized,and to a quasi truncation function with the optimized filter function is studied to achieve optimal bimodal resolution and to remove noise peaks.This new quasi truncation function fits multimode distribution very well.By combining the quasi truncation function with Shifrin transform,noise peaks are removed well and the adjacent peaks are distinguished clearly.Finally,laser diffraction experiments are conducted and the particle size distribution is analyzed by adoping the method.The results show that the quasi truncation function has better bimodal resolution than the truncation function.Generally,by combining the quasi truncation function with the Shifrin transform,in particle size distribution measurements with laser diffraction,the bimodal resolution is greatly increased and the noise is removed well.And the results can restore the original distribution perfectly.Therefore,the new method with combination of the quasi truncation function and the Shifrin transform provides a feasible and effective way to measure the multimode particle size distribution by laser diffraction.
文摘The results of measurements conducted to determine the number and mass concentration of particles emitted from the liquefied natural gas (LNG) fueled spark ignition engines are presented. Particle size distributions were measured at different speeds, different loads and ESC cycles. The nanoparticles with diameter smaller than 39 nm, measured by the electrical low-pressure impactor (ELPI), are dominant in number con- centration that is nearly 92.7 % of the total number of the emitted particles at the peak point. As for the mass of emission particle, it is shown that the mass of the particles greater than 1.2μm is more than 65 % that of the emitted particles.
基金Indian Institute of Technology,Kharagpur in India for supporting this work
文摘Particle size distribution of coarse aggregates through mechanical sieving gives results in terms of cumu- lative mass percent. But digital image processing generated size distribution of particles, while being fast and accurate, is often expressed in terms of area function or number of particles. In this paper, a mass model is developed which converts the image obtained size distribution to mass-wise distribution, mak- ing it readily comparable to mechanical sieving data. The concept of weight/particle ratio is introduced for mass reconstruction from 2D images of particle aggregates. Using this mass model, the effects of several particle shape parameters (such as major axis, minor axis, and equivalent diameter) on sieve-size of the particles is studied. It is shown that the sieve-size of a particle strongly depend upon the shape param- eters, 91% of its variation being explained by major axis, minor axis, bounding box length and equivalent diameter. Furthermore, minor axis gives an overall accurate estimate of particle sieve-size, error in mean size (D-50) being just 0.4%. However, sieve-size of smaller particles (〈20 ram) strongly depends upon the length of the smaller arm of the bounding box enclosing them and sieve-sizes of larger particles (〉20 mm) are highly correlated to their equivalent diameters. Multiple linear regression analysis has been used to generate overall mass-wise particle size distribution, considering the influences of all these shape parameters on particle sieve-size. Multiple linear regression generated overall mass-wise particle size distribution shows a strong correlation with sieve generated data. The adjusted R-square value of the regression analysis is found to be 99 percent (w.r,t cumulative frequency). The method proposed in this paper provides a time-efficient way of producing accurate (up to 99%) mass-wise PSD using digital image processing and it can be used effectively to renlace the mechanical sieving.
文摘For two-dimensional unmagnetized dusty plasmas with many different dust grain species, a Kadomtsev-Petviashvili (KP) equation, a modified KP (mKP) equation and a coupled KP(cKP) equation for small, but finite amplitude dustacoustic solitary waves are obtained for different physical conditions respectively. The influence of an arbitrary dust size distribution described by a polynomial expressed function on the properties of dust-acoustic solitary waves is investigated numerically. How dust size distribution affects the sign and the magnitude of nonlinear coefficient A (D) of KP (mKP) equation is also discussed in detail. It is noted that whether a compressive or a rarefactive solitary wave exists depends on the dust size distribution in some dusty plasmas.
基金Project supported by the National Natural Science Foundation of China (Grant No 60476009).
文摘Self-assembled lnAs quantum dots (QDs) are grown on vicinal GaAs (100) substrates by using metal-organic chemical vapour deposition (MOCVD). An abnormal temperature dependence of bimodal size distribution of InAs quantum dots is found. As the temperature increases, the density of the small dots grows larger while the density of the large dots turns smaller, which is contrary to the evolution of QDs on exact GaAs (100) substrates. This trend is explained by taking into account the presence of multiatoinic steps on the substrates. The optical properties of InAs QDs on vicinal GaAs(100) substrates are also studied by photoluminescence (PL) . It is found that dots on a vicinal substrate have a longer emission wavelength, a narrower PL line width and a much larger PL intensity.
文摘The effect of particle size distribution on the field and temperature dependence of the hysteresis loop features like coercivity(HC), remanence(MR), and blocking temperature(TB) is simulated for an ensemble of single domain ferromagnetic nanoparticles with uniaxial anisotropy. Our simulations are based on the two-state model for T 〈 TB and the metropolis Monte-Carlo method for T 〉 TB. It is found that the increase in the grain size significantly enhances HC and TB. The presence of interparticle exchange interaction in the system suppresses HC but causes MRto significantly increase.Our results show that the parameters associated with the particle size distribution(D(d,δ)) such as the mean particle size d and standard-deviation δ play key roles in the magnetic behavior of the system.
文摘Based on the aircraft observations in the summer of 2003, we have studied the aerodynamic size distributions of airborne particles at altitudes ranging from 400 m to 2800 m over the central and southern areas of Jiangsu province located in Yangtse River Delta of China. The sizes of airborne particles are measured to be in a range of 0.47- 30 μm with 57 channels, and their number concentrations, surface area concentrations and mass concentrations are also measured. The results show that the concentrations of airborne particles are very low above an altitude of 2000 m and the size distributions present a specific multi-peak mode by using insufficient samples. Below 1000 m, however, the concentrations of particles increase obviously, and their size distribution is similar to that at the ground level. The study also indicates that the concentrations, size distributions and median diameters of airborne particles above and below the boundary layer are very different, displaying different pollution features. Meanwhile, the results also show that the pollution level of airborne particles has a descending tendency with altitude increasing.
基金supported by the National Natural Science Foundation of China(Grant No.10975114)the Prominent Youth Foundation of Lanzhou University of Technology,China(Grant No.0910ZXC082)
文摘Both linear and nonlinear excitation in dusty plasmas have been investigated including the nonadiabatic dust charge fluctuation and Gaussian size distribution dust particles. A linear dispersion relation and a Korteweg-de Vries-Burgers equation governing the dust acoustic shock waves are obtained. The relevance of the instability of wave and the wave evolution to the dust size distribution and nonadiabatic dust charge fluctuation is illustrated both analytically and numerically. The numerical results show that the Gaussian size distribution of dust particles and the nonadiabatic dust charge fluctuation have strong common influence on the propagation of both linear and nonlinear excitations.
基金Supported by National Nature Science Foundation of China(Grant 50409012).
文摘Grain size distribution of bed material is an important characteristic for studying evolution of natural river channel by means of experimental ways and numerical modeling of flow and sediment process.In this study,the fractal characteristic of sediment particle has been defined by means of fractal theory based on ana- lyzing the property of grain size distribution of bed material in the river channel.Furthennore,the fractal prop- erty of sediment particle has been applied to judge the process of armorin...
基金the National Natural Science Foundation of China(Grant Nos.11674074 and 61701133).
文摘Measurements of bubble size distribution require the understanding of the acoustic characteristics of the medium.The bubbles show highly nonlinear properties under finite amplitude acoustic excitation,so the acoustic fields from bubble population are easily observed at the second harmonics as well as at the fundamental frequency,which shows that the nonlinear coefficient increases obviously.The inversion method of bubble size distribution based on nonlinear acoustic effects can peel off the influence of complex environment and obtain the size distribution coefficient information of bubbles more accurately.The previous nonlinear inversion methods of bubble size distribution are mostly based on the nonlinear scattering cross-section characteristics of bubbles.However,the stability of inversion is not high enough.In this paper,we introduce a new acoustic inversion method for bubble size distribution,which is based on the nonlinear coefficients of bubble medium.Compared with other inversion methods based on linear or nonlinear scattering cross section,the inversion method based on nonlinear coefficients of bubble medium proposed in this paper shows good robustness in both simulation and experiment.
基金the National Natural Science Foundation of China (Grant No.22105184)Research Fund of SWUST for PhD (Grant No.22zx7175)+1 种基金Sichuan Science and Technology Program (Grant No.2019ZDZX0013)Institute of Chemical Materials Program (Grant No.SXK-2022-03)for financial support。
文摘High purity and ultrafine DAAF(u-DAAF)is an emerging insensitive charge in initiators.Although there are many ways to obtain u-DAAF,developing a preparation method with stable operation,accurate control,good quality consistency,equipment miniaturization,and minimum manpower is an inevitable requirement to adapt to the current social technology development trend.Here reported is the microfluidic preparation of u-DAAF with tunable particle size by a passive swirling microreactor.Under the guidance of recrystallization growth kinetics and mixing behavior of fluids in the swirling microreactor,the key parameters(liquid flow rate,explosive concentration and crystallization temperature)were screened and optimized through screening experiments.Under the condition that no surfactant is added and only experimental parameters are controlled,the particle size of recrystallized DAAF can be adjusted from 98 nm to 785 nm,and the corresponding specific surface area is 8.45 m^(2)·g^(-1)to 1.33 m^(2)·g^(-1).In addition,the preparation method has good batch stability,high yield(90.8%-92.6%)and high purity(99.0%-99.4%),indicating a high practical application potential.Electric explosion derived flyer initiation tests demonstrate that the u-DAAF shows an initiation sensitivity much lower than that of the raw DAAF,and comparable to that of the refined DAAF by conventional spraying crystallization method.This study provides an efficient method to fabricate u-DAAF with narrow particle size distribution and high reproducibility as well as a theoretical reference for fabrication of other ultrafine explosives.
基金Supported by the Natural Science Funds (20001015) of Xianxi Province.
文摘Ultrasonic technology has been intensively studied recently due to its special features. In this paper, an ultrasonic crystallization method was introduced for the preparation of ZnAl-Hydrotalcite-Like compounds (ZnAl-HTLcs). Samples with high crystallinity, small particle size and narrow particle size distribution were obtained and fully characterized using conventional techniques of XRD, FT-IR and TGDTA. The results prove that both ultrasonic frequency and ultrasonic power have effects on the sizes of the product particles. By varying the ultrasonic power from 250 W to 88 W, with the ultrasonic frequency fixed at 59 kHz, the median particle size of the samples increased from 0.37 μm to 0.82 μm. By altering the hydrothermal treatment time from 1 h to 5 h at 110 ℃, the median particle size of ZnAl-HTLcs synthesized via ultrasonic crystallization increased from 0.88 μm to 1.11 μm.
基金This work was supported by National Natural Science Foundation of China(Nos.52034007,52074263,52108365 and 52104104)the Post-graduate Research and Practice Innovation Program of Jiangsu Province(No.KYCX21_2340).
文摘It’s a universal engineering problem to seal micro-cracks of low-permeability argillaceous rock mass by grouting in the fields of civil engineering and mining.This paper achieved the grouting sealing of lowpermeability artificial rocks with the permeability of 0.1–40 mD by adopting silica sol imbibition grouting.The variation characteristics of particle size,viscosity,and contact angle of silica sol during solidification and the pore size distribution of low-permeability artificial rocks were measured,and spontaneous imbibition tests of the artificial rocks were carried out.Finally,combined with the imbibition theory,percolation theory,and fracture medium grouting principle,the silica sol imbibition mechanism of lowpermeability rocks and soil was discussed.The results show that:(1)Silica sol can be injected into artificial rocks with the minimum permeability of 0.1 mD through spontaneous imbibition;(2)The particle size increase of silica sol leads to decreased wettability,affinity,and injectability in grouting materials;and(3)In the range of 0.1–40 mD,the grout absorption first increases and then decreases with increased permeability.The number of large pores and fractures in the rock mass is related to injectability,and the number of small and medium pores is related to the internal driving force of imbibition.This study provides a theoretical basis for silica sol grouting sealing of low-permeability argillaceous rocks and is,therefore,an important reference for application.
基金the Key Project of National Fundamental Research and Development of China (No. 2012CB214904)the National Natural Science Foundation of China for Innovative Research Group (No. 51221462)+1 种基金the National Natural Science Foundation of China (Nos. 51134022 and 51174203)Specialized Research Fund for the Doctoral Program of Higher Education (No. 20120095130001)
文摘Dry coal separation has been the most significant process in the field of coal beneficiation to date, because of its special advantage of operation with no water consumption. Mineral dry separation research has received wide attention, particularly in countries and regions experiencing drought and water shortages. During the process of dense coal gas-solid fluidized bed beneficiation, the material is stratified according to its density; the high density material layer remains at the bed bottom, and thus the high density coarse particle bed becomes an important infuencing factor in fluidized bed stability. In the steady fluidization stage, a small number of large radius bubbles are the direct cause of unsteady fluidization in the tradi- tional fluidized bed. The dispersion effect of the secondary air distribution bed for air flow is mainly apparent in the gas region; when the particle size exceeds 13 mm, the secondary air distribution bed has a synergistic effect on the density stability of the upper fluidized layer. When the particle size is small, especially when less than 6 ram, particles will constantly move, accounting for instability of the secondary air distribution bed and distorting the stability of the upper fluidized bed. Under optimum operation conditions, the probable deviation E of gas-solid separation fluidized with a high density coarse particle layer can be as low as 0.085 g/cm3.