In order to solve the problems of short network lifetime and high data transmission delay in data gathering for wireless sensor network(WSN)caused by uneven energy consumption among nodes,a hybrid energy efficient clu...In order to solve the problems of short network lifetime and high data transmission delay in data gathering for wireless sensor network(WSN)caused by uneven energy consumption among nodes,a hybrid energy efficient clustering routing base on firefly and pigeon-inspired algorithm(FF-PIA)is proposed to optimise the data transmission path.After having obtained the optimal number of cluster head node(CH),its result might be taken as the basis of producing the initial population of FF-PIA algorithm.The L′evy flight mechanism and adaptive inertia weighting are employed in the algorithm iteration to balance the contradiction between the global search and the local search.Moreover,a Gaussian perturbation strategy is applied to update the optimal solution,ensuring the algorithm can jump out of the local optimal solution.And,in the WSN data gathering,a onedimensional signal reconstruction algorithm model is developed by dilated convolution and residual neural networks(DCRNN).We conducted experiments on the National Oceanic and Atmospheric Administration(NOAA)dataset.It shows that the DCRNN modeldriven data reconstruction algorithm improves the reconstruction accuracy as well as the reconstruction time performance.FF-PIA and DCRNN clustering routing co-simulation reveals that the proposed algorithm can effectively improve the performance in extending the network lifetime and reducing data transmission delay.展开更多
Recently,internet stimulates the explosive progress of knowledge discovery in big volume data resource,to dig the valuable and hidden rules by computing.Simultaneously,the wireless channel measurement data reveals big...Recently,internet stimulates the explosive progress of knowledge discovery in big volume data resource,to dig the valuable and hidden rules by computing.Simultaneously,the wireless channel measurement data reveals big volume feature,considering the massive antennas,huge bandwidth and versatile application scenarios.This article firstly presents a comprehensive survey of channel measurement and modeling research for mobile communication,especially for 5th Generation(5G) and beyond.Considering the big data research progress,then a cluster-nuclei based model is proposed,which takes advantages of both the stochastical model and deterministic model.The novel model has low complexity with the limited number of cluster-nuclei while the cluster-nuclei has the physical mapping to real propagation objects.Combining the channel properties variation principles with antenna size,frequency,mobility and scenario dug from the channel data,the proposed model can be expanded in versatile application to support future mobile research.展开更多
Cluster-based channel model is the main stream of fifth generation mobile communications, thus the accuracy of clustering algorithm is important. Traditional Gaussian mixture model (GMM) does not consider the power in...Cluster-based channel model is the main stream of fifth generation mobile communications, thus the accuracy of clustering algorithm is important. Traditional Gaussian mixture model (GMM) does not consider the power information which is important for the channel multipath clustering. In this paper, a normalized power weighted GMM (PGMM) is introduced to model the channel multipath components (MPCs). With MPC power as a weighted factor, the PGMM can fit the MPCs in accordance with the cluster-based channel models. Firstly, expectation maximization (EM) algorithm is employed to optimize the PGMM parameters. Then, to further increase the searching ability of EM and choose the optimal number of components without resort to cross-validation, the variational Bayesian (VB) inference is employed. Finally, 28 GHz indoor channel measurement data is used to demonstrate the effectiveness of the PGMM clustering algorithm.展开更多
In this study,a comprehensive investigation on different cluster configurations of the ~9Be nucleus is performed with a simple cluster approach.With this goal,the elastic scattering angular distributions of ~9Be by ^(...In this study,a comprehensive investigation on different cluster configurations of the ~9Be nucleus is performed with a simple cluster approach.With this goal,the elastic scattering angular distributions of ~9Be by ^(27)A1,^(28)Si,^(64)Zn,^(144)Sm,^(208)Pb,and ^(209)Bi target nuclei are reanalyzed for α + α + n,d + ~7Li,~3H + ~6Li,~3He + ~6He and n + ~8Be cluster configurations of the ~9Be projectile within the framework of the optical model.The theoretical results are compared with each other as well as the experimental data.The results provide an opportunity for a test of different cluster configurations in explaining the elastic scattering of^9Be nucleus.展开更多
The search for the development of a reliable mathematical model for understanding bubble dynamics behavior is an ongoing endeavor.A long list of complex phenomena underlies the physics of this problem.In the past deca...The search for the development of a reliable mathematical model for understanding bubble dynamics behavior is an ongoing endeavor.A long list of complex phenomena underlies the physics of this problem.In the past decades,the lattice Boltzmann method has emerged as a promising tool to address such complexities.In this regard,we have applied a 121-velocity multiphase lattice Boltzmann model to an asymmetric cluster of bubbles in an acoustic field.A problem as a benchmark is studied to check the consistency and applicability of the model.The problem of interest is to study the deformation and coalescence phenomena in bubble cluster dynamics,as well as the screening effect on an acoustic multibubble medium.It has been observed that the LB model is able to simulate the combination of the three aforementioned phenomena for a bubble cluster as a whole and for every individual bubble in the cluster.展开更多
To overcome the limitation of the traditional clustering algorithms which fail to produce meaningful clusters in high-dimensional, sparseness and binary value data sets, a new method based on hypergraph model is propo...To overcome the limitation of the traditional clustering algorithms which fail to produce meaningful clusters in high-dimensional, sparseness and binary value data sets, a new method based on hypergraph model is proposed. The hypergraph model maps the relationship present in the original data in high dimensional space into a hypergraph. A hyperedge represents the similarity of attrlbute-value distribution between two points. A hypergraph partitioning algorithm is used to find a partitioning of the vertices such that the corresponding data items in each partition are highly related and the weight of the hyperedges cut by the partitioning is minimized. The quality of the clustering result can be evaluated by applying the intra-cluster singularity value. Analysis and experimental results have demonstrated that this approach is applicable and effective in wide ranging scheme.展开更多
The accumulation of He on a W surface during keV-He ion irradiation has been simulated using cluster dynamics modeling. This is based mainly on rate theory and improved by involving different types of objects, adoptin...The accumulation of He on a W surface during keV-He ion irradiation has been simulated using cluster dynamics modeling. This is based mainly on rate theory and improved by involving different types of objects, adopting up-to-date parameters and complex reaction processes, as well as considering the diffusion process along with depth. These new features make the simulated results compare very well with the experimental ones. The accumulation and diffusion processes are analyzed, and the depth and size dependence of the He concentrations contributed by different types of He clusters is also discussed. The exploration of the trapping and diffusion effects of the He atoms is helpful in understanding the evolution of the damages in the near-surface of plasma-facing materials under He ion irradiation.展开更多
Statistical prediction is often required in reservoir simulation to quantify production uncertainty or assess potential risks.Most existing uncertainty quantification procedures aim to decompose the input random field...Statistical prediction is often required in reservoir simulation to quantify production uncertainty or assess potential risks.Most existing uncertainty quantification procedures aim to decompose the input random field to independent random variables,and may suffer from the curse of dimensionality if the correlation scale is small compared to the domain size.In this work,we develop and test a new approach,K-means clustering assisted empirical modeling,for efficiently estimating waterflooding performance for multiple geological realizations.This method performs single-phase flow simulations in a large number of realizations,and uses K-means clustering to select only a few representatives,on which the two-phase flow simulations are implemented.The empirical models are then adopted to describe the relation between the single-phase solutions and the two-phase solutions using these representatives.Finally,the two-phase solutions in all realizations can be predicted using the empirical models readily.The method is applied to both 2D and 3D synthetic models and is shown to perform well in the P10,P50 and P90 of production rates,as well as the probability distributions as illustrated by cumulative density functions.It is able to capture the ensemble statistics of the Monte Carlo simulation results with a large number of realizations,and the computational cost is significantly reduced.展开更多
Mathematical modeling for nanofiltration of ionic liquids(ILs) solutions could assist to understand transfer mechanism and predict experimental values. In this work, modeling by solution-diffusion model for nanofiltra...Mathematical modeling for nanofiltration of ionic liquids(ILs) solutions could assist to understand transfer mechanism and predict experimental values. In this work, modeling by solution-diffusion model for nanofiltration of long-alkyl-chain ILs aqueous solutions was proposed. Molecular simulations were performed to validate the existence of ion cluster in long-alkyl-chain ILs aqueous solution. Based on the results of simulations, parameters used in the solution-diffusion model were modified, such as concentration of ILs and diameter of ion cluster.The modeling process was developed for three long-alkyl-chain ILs aqueous solutions with different concentrations(1-alkyl-3-methylimidazolium chloride: [C6 mim]Cl, [C8 mim]Cl, [C10 mim]Cl). The calculated values obtained from modified solution-diffusion model could well match the experimental values.展开更多
To make the quantitative results of nuclear magnetic resonance(NMR) transverse relaxation(T;) spectrums reflect the type and pore structure of reservoir more directly, an unsupervised clustering method was developed t...To make the quantitative results of nuclear magnetic resonance(NMR) transverse relaxation(T;) spectrums reflect the type and pore structure of reservoir more directly, an unsupervised clustering method was developed to obtain the quantitative pore structure information from the NMR T;spectrums based on the Gaussian mixture model(GMM). Firstly, We conducted the principal component analysis on T;spectrums in order to reduce the dimension data and the dependence of the original variables. Secondly, the dimension-reduced data was fitted using the GMM probability density function, and the model parameters and optimal clustering numbers were obtained according to the expectation-maximization algorithm and the change of the Akaike information criterion. Finally, the T;spectrum features and pore structure types of different clustering groups were analyzed and compared with T;geometric mean and T;arithmetic mean. The effectiveness of the algorithm has been verified by numerical simulation and field NMR logging data. The research shows that the clustering results based on GMM method have good correlations with the shape and distribution of the T;spectrum, pore structure, and petroleum productivity, providing a new means for quantitative identification of pore structure, reservoir grading, and oil and gas productivity evaluation.展开更多
The geometry and electronic topology properties of Mg/Al hydrotalcite cluster models were comparatively investigated by means of density functional theory at GGA/DND levels.The results suggested that cluster model con...The geometry and electronic topology properties of Mg/Al hydrotalcite cluster models were comparatively investigated by means of density functional theory at GGA/DND levels.The results suggested that cluster model containing seven octahedral cations was the smallest size to be employed to simulate other properties.The fact that the n+ charge of cluster models containing n aluminum atoms can reflect electronic properties of anionic clay layer sheet.The bond lengths of clusters can be modified by terminating with or without OH-/H2O groups in terms of principle of bond order conservation.展开更多
In response to an outbreak of coronavirus disease 2019(COVID-19)within a cluster of Navy personnel in Sri Lanka commencing from 22nd April 2020,an aggressive outbreak management program was launched by the Epidemiolog...In response to an outbreak of coronavirus disease 2019(COVID-19)within a cluster of Navy personnel in Sri Lanka commencing from 22nd April 2020,an aggressive outbreak management program was launched by the Epidemiology Unit of the Ministry of Health.To predict the possible number of cases within the susceptible population under four social distancing scenarios,the COVID-19 Hospital Impact Model for Epidemics(CHIME)was used.With increasing social distancing,the epidemiological curve flattened,and its peak shifted to the right.The observed or actually reported number of cases was above the projected number of cases at the onset;however,subsequently,it fell below all predicted trends.Predictive modelling is a useful tool for the control of outbreaks such as COVID-19 in a closed community.展开更多
In order to implement the robust cluster analysis,solve the problem that the outliers in the data will have a serious disturbance to the probability density parameter estimation,and therefore affect the accuracy of cl...In order to implement the robust cluster analysis,solve the problem that the outliers in the data will have a serious disturbance to the probability density parameter estimation,and therefore affect the accuracy of clustering,a robust cluster analysis method is proposed which is based on the diversity self-paced t-mixture model.This model firstly adopts the t-distribution as the submodel which tail is easily controllable.On this basis,it utilizes the entropy penalty expectation conditional maximal algorithm as a pre-clustering step to estimate the initial parameters.After that,this model introduces l2,1-norm as a self-paced regularization term and developes a new ECM optimization algorithm,in order to select high confidence samples from each component in training.Finally,experimental results on several real-world datasets in different noise environments show that the diversity self-paced t-mixture model outperforms the state-of-the-art clustering methods.It provides significant guidance for the construction of the robust mixture distribution model.展开更多
As a promising edge learning framework in future 6G networks,federated learning(FL)faces a number of technical challenges due to the heterogeneous network environment and diversified user behaviors.Data imbalance is o...As a promising edge learning framework in future 6G networks,federated learning(FL)faces a number of technical challenges due to the heterogeneous network environment and diversified user behaviors.Data imbalance is one of these challenges that can significantly degrade the learning efficiency.To deal with data imbalance issue,this work proposes a new learning framework,called clustered federated learning with weighted model aggregation(weighted CFL).Compared with traditional FL,our weighted CFL adaptively clusters the participating edge devices based on the cosine similarity of their local gradients at each training iteration,and then performs weighted per-cluster model aggregation.Therein,the similarity threshold for clustering is adaptive over iterations in response to the time-varying divergence of local gradients.Moreover,the weights for per-cluster model aggregation are adjusted according to the data balance feature so as to speed up the convergence rate.Experimental results show that the proposed weighted CFL achieves a faster model convergence rate and greater learning accuracy than benchmark methods under the imbalanced data scenario.展开更多
We study the percolation transition in a one-species cluster aggregation network model, in which the parameter α describes the suppression on the cluster sizes. It is found that the model can exhibit four types of pe...We study the percolation transition in a one-species cluster aggregation network model, in which the parameter α describes the suppression on the cluster sizes. It is found that the model can exhibit four types of percolation transitions, two continuous percolation transitions and two discontinuous ones. Continuous and discontinuous percolation transitions can be distinguished from each other by the largest single jump. Two types of continuous percolation transitions show different behaviors in the time gap. Two types of discontinuous percolation transitions are different in the time evolution of the cluster size distribution. Moreover, we also find that the time gap may also be a measure to distinguish different discontinuous percolations in this model.展开更多
基金partially supported by the National Natural Science Foundation of China(62161016)the Key Research and Development Project of Lanzhou Jiaotong University(ZDYF2304)+1 种基金the Beijing Engineering Research Center of Highvelocity Railway Broadband Mobile Communications(BHRC-2022-1)Beijing Jiaotong University。
文摘In order to solve the problems of short network lifetime and high data transmission delay in data gathering for wireless sensor network(WSN)caused by uneven energy consumption among nodes,a hybrid energy efficient clustering routing base on firefly and pigeon-inspired algorithm(FF-PIA)is proposed to optimise the data transmission path.After having obtained the optimal number of cluster head node(CH),its result might be taken as the basis of producing the initial population of FF-PIA algorithm.The L′evy flight mechanism and adaptive inertia weighting are employed in the algorithm iteration to balance the contradiction between the global search and the local search.Moreover,a Gaussian perturbation strategy is applied to update the optimal solution,ensuring the algorithm can jump out of the local optimal solution.And,in the WSN data gathering,a onedimensional signal reconstruction algorithm model is developed by dilated convolution and residual neural networks(DCRNN).We conducted experiments on the National Oceanic and Atmospheric Administration(NOAA)dataset.It shows that the DCRNN modeldriven data reconstruction algorithm improves the reconstruction accuracy as well as the reconstruction time performance.FF-PIA and DCRNN clustering routing co-simulation reveals that the proposed algorithm can effectively improve the performance in extending the network lifetime and reducing data transmission delay.
基金supported in part by National Natural Science Foundation of China (61322110, 6141101115)Doctoral Fund of Ministry of Education (201300051100013)
文摘Recently,internet stimulates the explosive progress of knowledge discovery in big volume data resource,to dig the valuable and hidden rules by computing.Simultaneously,the wireless channel measurement data reveals big volume feature,considering the massive antennas,huge bandwidth and versatile application scenarios.This article firstly presents a comprehensive survey of channel measurement and modeling research for mobile communication,especially for 5th Generation(5G) and beyond.Considering the big data research progress,then a cluster-nuclei based model is proposed,which takes advantages of both the stochastical model and deterministic model.The novel model has low complexity with the limited number of cluster-nuclei while the cluster-nuclei has the physical mapping to real propagation objects.Combining the channel properties variation principles with antenna size,frequency,mobility and scenario dug from the channel data,the proposed model can be expanded in versatile application to support future mobile research.
基金supported by National Science and Technology Major Program of the Ministry of Science and Technology (No.2018ZX03001031)Key program of Beijing Municipal Natural Science Foundation (No. L172030)+2 种基金Beijing Municipal Science & Technology Commission Project (No. Z171100005217001)Key Project of State Key Lab of Networking and Switching Technology (NST20170205)National Key Technology Research and Development Program of the Ministry of Science and Technology of China (NO. 2012BAF14B01)
文摘Cluster-based channel model is the main stream of fifth generation mobile communications, thus the accuracy of clustering algorithm is important. Traditional Gaussian mixture model (GMM) does not consider the power information which is important for the channel multipath clustering. In this paper, a normalized power weighted GMM (PGMM) is introduced to model the channel multipath components (MPCs). With MPC power as a weighted factor, the PGMM can fit the MPCs in accordance with the cluster-based channel models. Firstly, expectation maximization (EM) algorithm is employed to optimize the PGMM parameters. Then, to further increase the searching ability of EM and choose the optimal number of components without resort to cross-validation, the variational Bayesian (VB) inference is employed. Finally, 28 GHz indoor channel measurement data is used to demonstrate the effectiveness of the PGMM clustering algorithm.
文摘In this study,a comprehensive investigation on different cluster configurations of the ~9Be nucleus is performed with a simple cluster approach.With this goal,the elastic scattering angular distributions of ~9Be by ^(27)A1,^(28)Si,^(64)Zn,^(144)Sm,^(208)Pb,and ^(209)Bi target nuclei are reanalyzed for α + α + n,d + ~7Li,~3H + ~6Li,~3He + ~6He and n + ~8Be cluster configurations of the ~9Be projectile within the framework of the optical model.The theoretical results are compared with each other as well as the experimental data.The results provide an opportunity for a test of different cluster configurations in explaining the elastic scattering of^9Be nucleus.
文摘The search for the development of a reliable mathematical model for understanding bubble dynamics behavior is an ongoing endeavor.A long list of complex phenomena underlies the physics of this problem.In the past decades,the lattice Boltzmann method has emerged as a promising tool to address such complexities.In this regard,we have applied a 121-velocity multiphase lattice Boltzmann model to an asymmetric cluster of bubbles in an acoustic field.A problem as a benchmark is studied to check the consistency and applicability of the model.The problem of interest is to study the deformation and coalescence phenomena in bubble cluster dynamics,as well as the screening effect on an acoustic multibubble medium.It has been observed that the LB model is able to simulate the combination of the three aforementioned phenomena for a bubble cluster as a whole and for every individual bubble in the cluster.
文摘To overcome the limitation of the traditional clustering algorithms which fail to produce meaningful clusters in high-dimensional, sparseness and binary value data sets, a new method based on hypergraph model is proposed. The hypergraph model maps the relationship present in the original data in high dimensional space into a hypergraph. A hyperedge represents the similarity of attrlbute-value distribution between two points. A hypergraph partitioning algorithm is used to find a partitioning of the vertices such that the corresponding data items in each partition are highly related and the weight of the hyperedges cut by the partitioning is minimized. The quality of the clustering result can be evaluated by applying the intra-cluster singularity value. Analysis and experimental results have demonstrated that this approach is applicable and effective in wide ranging scheme.
基金supported by the Special Funds for Major State Basic Research Project of China(973)(Nos.2007CB925004 and 2008CB717802)the Knowledge Innovation Program of the Chinese Academy of Sciences(No.KJCX2-YW-N35)+2 种基金National Natural Science Foundation of China(No.11005124)the China Postdoctoral Science Foundation Funded Project(No.20100470863)Director Grants of CASHIPS.Part of the calculations were performed in the Center for Computational Science of CASHIPS
文摘The accumulation of He on a W surface during keV-He ion irradiation has been simulated using cluster dynamics modeling. This is based mainly on rate theory and improved by involving different types of objects, adopting up-to-date parameters and complex reaction processes, as well as considering the diffusion process along with depth. These new features make the simulated results compare very well with the experimental ones. The accumulation and diffusion processes are analyzed, and the depth and size dependence of the He concentrations contributed by different types of He clusters is also discussed. The exploration of the trapping and diffusion effects of the He atoms is helpful in understanding the evolution of the damages in the near-surface of plasma-facing materials under He ion irradiation.
基金the funding supported by Beijing Natural Science Foundation(Grant No.3222037)the PetroChina Innovation Foundation(Grant No.2020D-5007-0203)by the Science Foundation of China University of Petroleum,Beijing(Nos.2462021YXZZ010,2462018QZDX13,and 2462020YXZZ028)
文摘Statistical prediction is often required in reservoir simulation to quantify production uncertainty or assess potential risks.Most existing uncertainty quantification procedures aim to decompose the input random field to independent random variables,and may suffer from the curse of dimensionality if the correlation scale is small compared to the domain size.In this work,we develop and test a new approach,K-means clustering assisted empirical modeling,for efficiently estimating waterflooding performance for multiple geological realizations.This method performs single-phase flow simulations in a large number of realizations,and uses K-means clustering to select only a few representatives,on which the two-phase flow simulations are implemented.The empirical models are then adopted to describe the relation between the single-phase solutions and the two-phase solutions using these representatives.Finally,the two-phase solutions in all realizations can be predicted using the empirical models readily.The method is applied to both 2D and 3D synthetic models and is shown to perform well in the P10,P50 and P90 of production rates,as well as the probability distributions as illustrated by cumulative density functions.It is able to capture the ensemble statistics of the Monte Carlo simulation results with a large number of realizations,and the computational cost is significantly reduced.
基金financially supported by National Key Research and Develop Program of China (2017YFA0206803)National Science Fund for Excellent Young Scholars (21722610)+2 种基金National Natural Science Foundation of China (21676277)Key Program of National Natural Science Foundation of China (91434203)CAS-SAFEA International PartnershipProgramforCreativeResearchTeams (20140491518)
文摘Mathematical modeling for nanofiltration of ionic liquids(ILs) solutions could assist to understand transfer mechanism and predict experimental values. In this work, modeling by solution-diffusion model for nanofiltration of long-alkyl-chain ILs aqueous solutions was proposed. Molecular simulations were performed to validate the existence of ion cluster in long-alkyl-chain ILs aqueous solution. Based on the results of simulations, parameters used in the solution-diffusion model were modified, such as concentration of ILs and diameter of ion cluster.The modeling process was developed for three long-alkyl-chain ILs aqueous solutions with different concentrations(1-alkyl-3-methylimidazolium chloride: [C6 mim]Cl, [C8 mim]Cl, [C10 mim]Cl). The calculated values obtained from modified solution-diffusion model could well match the experimental values.
基金Supported by the National Natural Science Foundation of China (42174142)National Science and Technology Major Project (2017ZX05039-002)+2 种基金Operation Fund of China National Petroleum Corporation Logging Key Laboratory (2021DQ20210107-11)Fundamental Research Funds for Central Universities (19CX02006A)Major Science and Technology Project of China National Petroleum Corporation (ZD2019-183-006)。
文摘To make the quantitative results of nuclear magnetic resonance(NMR) transverse relaxation(T;) spectrums reflect the type and pore structure of reservoir more directly, an unsupervised clustering method was developed to obtain the quantitative pore structure information from the NMR T;spectrums based on the Gaussian mixture model(GMM). Firstly, We conducted the principal component analysis on T;spectrums in order to reduce the dimension data and the dependence of the original variables. Secondly, the dimension-reduced data was fitted using the GMM probability density function, and the model parameters and optimal clustering numbers were obtained according to the expectation-maximization algorithm and the change of the Akaike information criterion. Finally, the T;spectrum features and pore structure types of different clustering groups were analyzed and compared with T;geometric mean and T;arithmetic mean. The effectiveness of the algorithm has been verified by numerical simulation and field NMR logging data. The research shows that the clustering results based on GMM method have good correlations with the shape and distribution of the T;spectrum, pore structure, and petroleum productivity, providing a new means for quantitative identification of pore structure, reservoir grading, and oil and gas productivity evaluation.
基金supported by China University of Petroleum (East China) (grant 09CX04045A)
文摘The geometry and electronic topology properties of Mg/Al hydrotalcite cluster models were comparatively investigated by means of density functional theory at GGA/DND levels.The results suggested that cluster model containing seven octahedral cations was the smallest size to be employed to simulate other properties.The fact that the n+ charge of cluster models containing n aluminum atoms can reflect electronic properties of anionic clay layer sheet.The bond lengths of clusters can be modified by terminating with or without OH-/H2O groups in terms of principle of bond order conservation.
文摘In response to an outbreak of coronavirus disease 2019(COVID-19)within a cluster of Navy personnel in Sri Lanka commencing from 22nd April 2020,an aggressive outbreak management program was launched by the Epidemiology Unit of the Ministry of Health.To predict the possible number of cases within the susceptible population under four social distancing scenarios,the COVID-19 Hospital Impact Model for Epidemics(CHIME)was used.With increasing social distancing,the epidemiological curve flattened,and its peak shifted to the right.The observed or actually reported number of cases was above the projected number of cases at the onset;however,subsequently,it fell below all predicted trends.Predictive modelling is a useful tool for the control of outbreaks such as COVID-19 in a closed community.
基金Supported by the 13th 5-Year National Science and Technology Supporting Project(2018YFC2000302)。
文摘In order to implement the robust cluster analysis,solve the problem that the outliers in the data will have a serious disturbance to the probability density parameter estimation,and therefore affect the accuracy of clustering,a robust cluster analysis method is proposed which is based on the diversity self-paced t-mixture model.This model firstly adopts the t-distribution as the submodel which tail is easily controllable.On this basis,it utilizes the entropy penalty expectation conditional maximal algorithm as a pre-clustering step to estimate the initial parameters.After that,this model introduces l2,1-norm as a self-paced regularization term and developes a new ECM optimization algorithm,in order to select high confidence samples from each component in training.Finally,experimental results on several real-world datasets in different noise environments show that the diversity self-paced t-mixture model outperforms the state-of-the-art clustering methods.It provides significant guidance for the construction of the robust mixture distribution model.
文摘As a promising edge learning framework in future 6G networks,federated learning(FL)faces a number of technical challenges due to the heterogeneous network environment and diversified user behaviors.Data imbalance is one of these challenges that can significantly degrade the learning efficiency.To deal with data imbalance issue,this work proposes a new learning framework,called clustered federated learning with weighted model aggregation(weighted CFL).Compared with traditional FL,our weighted CFL adaptively clusters the participating edge devices based on the cosine similarity of their local gradients at each training iteration,and then performs weighted per-cluster model aggregation.Therein,the similarity threshold for clustering is adaptive over iterations in response to the time-varying divergence of local gradients.Moreover,the weights for per-cluster model aggregation are adjusted according to the data balance feature so as to speed up the convergence rate.Experimental results show that the proposed weighted CFL achieves a faster model convergence rate and greater learning accuracy than benchmark methods under the imbalanced data scenario.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11575036 and 11505016
文摘We study the percolation transition in a one-species cluster aggregation network model, in which the parameter α describes the suppression on the cluster sizes. It is found that the model can exhibit four types of percolation transitions, two continuous percolation transitions and two discontinuous ones. Continuous and discontinuous percolation transitions can be distinguished from each other by the largest single jump. Two types of continuous percolation transitions show different behaviors in the time gap. Two types of discontinuous percolation transitions are different in the time evolution of the cluster size distribution. Moreover, we also find that the time gap may also be a measure to distinguish different discontinuous percolations in this model.