期刊文献+
共找到2,346篇文章
< 1 2 118 >
每页显示 20 50 100
Super-resolution reconstruction of synthetic-aperture radar image using adaptive-threshold singular value decomposition technique 被引量:2
1
作者 朱正为 周建江 《Journal of Central South University》 SCIE EI CAS 2011年第3期809-815,共7页
A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. F... A super-resolution reconstruction approach of (SVD) technique was presented, and its performance was radar image using an adaptive-threshold singular value decomposition analyzed, compared and assessed detailedly. First, radar imaging model and super-resolution reconstruction mechanism were outlined. Then, the adaptive-threshold SVD super-resolution algorithm, and its two key aspects, namely the determination method of point spread function (PSF) matrix T and the selection scheme of singular value threshold, were presented. Finally, the super-resolution algorithm was demonstrated successfully using the measured synthetic-aperture radar (SAR) images, and a Monte Carlo assessment was carried out to evaluate the performance of the algorithm by using the input/output signal-to-noise ratio (SNR). Five versions of SVD algorithms, namely 1 ) using all singular values, 2) using the top 80% singular values, 3) using the top 50% singular values, 4) using the top 20% singular values and 5) using singular values s such that S2≥/max(s2)/rinsNR were tested. The experimental results indicate that when the singular value threshold is set as Smax/(rinSNR)1/2, the super-resolution algorithm provides a good compromise between too much noise and too much bias and has good reconstruction results. 展开更多
关键词 synthetic-aperture radar image reconstruction SUPER-RESOLUTION singular value decomposition adaptive-threshold
在线阅读 下载PDF
The Multi-Fractal Singularity Value Decomposition and Its Application in Extraction of Gravity Anomaly Associated with Gold Mineralization in Tongshi Gold Field
2
作者 Binbin Zhao China University of Geosciences(Beijing),Beijing 100083,China. 《地学前缘》 EI CAS CSCD 北大核心 2009年第S1期176-176,共1页
Because of the complication of geological procedures,the recorded data have the feature of nonlinear.The multi-fractal singularity value decomposition (MSVD) was used to decomposed the gravity data.In this paper,the M... Because of the complication of geological procedures,the recorded data have the feature of nonlinear.The multi-fractal singularity value decomposition (MSVD) was used to decomposed the gravity data.In this paper,the MSVD was utilized to extract the gravity anomaly associated with the gold mineralization in Tongshi gold field in the southwest of Shandong province.The results showed that the Tongshi complex with negative circular gravity anomaly is an important ore-controlling factor.And the positive ring gravity anomaly distributed 展开更多
关键词 MULTI-FRACTAL singularITY value decomposition(Msvd) gold deposits the TONGSHI complex SHANDONG province
在线阅读 下载PDF
一种基于AE-SVD模态重心频率的汽车助力转向泵裂纹转子在线辨识研究
3
作者 祝新军 李明 +2 位作者 金丹 裘杭锋 刘冬 《振动与冲击》 北大核心 2025年第19期257-263,共7页
针对汽车助力转向泵转子裂纹的动态辨识问题,提出了一种基于多传感器的声发射(acoustic emission,AE)重心频率的判定方法。首先,在同一个泵体中分别安装合格与裂纹转子,在同样的试验条件下从吸油和压油盘附近采集4路AE信号,采样频率为1 ... 针对汽车助力转向泵转子裂纹的动态辨识问题,提出了一种基于多传感器的声发射(acoustic emission,AE)重心频率的判定方法。首先,在同一个泵体中分别安装合格与裂纹转子,在同样的试验条件下从吸油和压油盘附近采集4路AE信号,采样频率为1 MHz;然后,从4个传感器采集的AE信号中按照单个周期长度截取子信号,经白化处理后构造AE信号矩阵,并对AE信号矩阵进行奇异值分解(singular value decomposition,SVD),根据分解结果提取4个正交模态向量;最后,对每个正交模态进行3层小波包分解,分别计算第3层前4个节点的重心频率,并通过与阈值的比较实现裂纹转子的判定。研究结果表明,在压力7 MPa和转速1000 r/min的试验条件下,对SVD得到的第2个模态进行3层小波包分解后,第2个节点的重心频率在阈值为95 kHz时能够可靠识别裂纹转子。 展开更多
关键词 声发射(AE) 奇异值分解(svd) 正交模态 重心频率 助力转向泵 裂纹转子
在线阅读 下载PDF
基于SVD与参数优化VMD的联合降噪方法研究
4
作者 赵月静 杜国 +1 位作者 才进 秦志英 《海军工程大学学报》 北大核心 2025年第5期92-98,共7页
针对滚动轴承因长期处于强噪声工作环境而故障频发,且早期故障信息微弱难以提取等问题,提出了一种基于奇异值分解(singular value decomposition,SVD)与参数优化变分模态分解(variational mode decomposition,VMD)的联合降噪方法。首先... 针对滚动轴承因长期处于强噪声工作环境而故障频发,且早期故障信息微弱难以提取等问题,提出了一种基于奇异值分解(singular value decomposition,SVD)与参数优化变分模态分解(variational mode decomposition,VMD)的联合降噪方法。首先,对轴承振动信号进行了SVD,依据奇异值差分谱理论确定了有效奇异值的阶数并进行了叠加重构,经过矩阵逆变换得到了初步降噪信号;然后,运用灰狼优化算法对VMD的模态个数K和惩罚因子α两参数寻优后进一步分解了初步降噪信号,同时基于峭度和相关系数复合指标选取模态分量;最后,对筛选信号进行了重构,并包络解调分析了降噪前后的故障特征频率。仿真数据和实验数据分析表明:所提方法在强噪声背景下或故障特征信息极其微弱时,都能够有效抑制噪声并提取有效故障信息。 展开更多
关键词 奇异值分解 降噪 变分模态分解 特征提取 参数优化
在线阅读 下载PDF
基于AFMD和SVDD的风电机组变桨轴承损伤识别
5
作者 王晓龙 张博文 +3 位作者 金韩微 付锐棋 杨秀彬 吴鹏 《太阳能学报》 北大核心 2025年第3期514-523,共10页
针对风电机组变桨轴承损伤识别问题,提出基于自适应特征模态分解和奇异值分解降噪的损伤识别方法。该方法首先利用龙格库塔优化策略对特征模态分解算法中的频带数量及滤波器长度参数进行搜索,确定最优参数组合后对原始振动信号进行自适... 针对风电机组变桨轴承损伤识别问题,提出基于自适应特征模态分解和奇异值分解降噪的损伤识别方法。该方法首先利用龙格库塔优化策略对特征模态分解算法中的频带数量及滤波器长度参数进行搜索,确定最优参数组合后对原始振动信号进行自适应特征模态分解,从中提取出蕴含丰富特征信息的模态分量;继而计算出所提取模态分量的包络信号并做进一步奇异值分解降噪处理,从而增强包络信号的信噪比;最后对比理论损伤特征频率及包络谱中幅值突出的频率成分,用于判断变桨轴承的故障损伤。实验数据分析结果表明,所提方法能从复杂原始振动信号中有效提取出微弱特征信息,实现变桨轴承损伤部位的准确甄别,具有一定工程参考借鉴价值。 展开更多
关键词 风电机组 变桨轴承 损伤识别 自适应特征模态分解 奇异值分解降噪
在线阅读 下载PDF
基于改进SVD-HPO-VMD电缆局部放电去噪方法
6
作者 马星河 李凯濛 +1 位作者 赵军营 刘鹏 《广东电力》 北大核心 2025年第4期89-100,共12页
对局部放电(partial discharge,PD)的检测是获知高压电缆绝缘状态的主要手段之一,但现场对PD信号的检测易受到噪声的干扰,从而影响对信号检测的准确度。为此,提出一种采用猎人猎物优化算法(hunter-prey optimization algorithm,HPO)优... 对局部放电(partial discharge,PD)的检测是获知高压电缆绝缘状态的主要手段之一,但现场对PD信号的检测易受到噪声的干扰,从而影响对信号检测的准确度。为此,提出一种采用猎人猎物优化算法(hunter-prey optimization algorithm,HPO)优化变分模态分解(variational mode decomposition,VMD),再采用改进奇异值分解(singular value decomposition,SVD)对PD信号进行降噪的方法。首先,对含噪PD信号进行傅里叶变换,在傅里叶变换功率谱中运用差分变换及设定阈值的方法去筛选周期性窄带干扰奇异值;然后,通过HPO优化VMD的参数选择,分解出K个本征模态函数(intrinsic mode function,IMF),利用模糊散布熵(fuzzy dispersion entropy,FuzzyDispEn)确定IMF的性质,从而区分有效分量和噪声分量,对分类后的噪声主导分量通过改进小波阈值方法进行去噪;最后,将信号进行重构,通过仿真和实验计算去噪后信号的信噪比、归一化相关系数以及均方误差,并与传统方法进行比对,证明提出的方法能够有效去除PD信号中的噪声分量,能够运用到供电系统中。 展开更多
关键词 局部放电 变分模态分解 奇异值分解 猎人猎物优化算法 模糊散布熵
在线阅读 下载PDF
基于OOA-VMD-SVD的结构振动信号降噪研究
7
作者 赵锐 卢西旺 岳子翔 《中国测试》 北大核心 2025年第10期148-159,共12页
为了解决建筑结构振动信号监测过程中存在的大量随机噪声问题,针对钢梁实测数据提出一种基于鱼鹰优化算法(OOA)的变分模态分解(VMD)联合奇异值分解(SVD)的新型降噪方法(OOA-VMD-SVD)。该方法首先基于仿真数据,利用鱼鹰优化算法,并结合... 为了解决建筑结构振动信号监测过程中存在的大量随机噪声问题,针对钢梁实测数据提出一种基于鱼鹰优化算法(OOA)的变分模态分解(VMD)联合奇异值分解(SVD)的新型降噪方法(OOA-VMD-SVD)。该方法首先基于仿真数据,利用鱼鹰优化算法,并结合能量熵判定机制,确定VMD分解层数K和二次惩罚因子α两个最优参数,从而有效抑制模态混叠现象;其次,利用皮尔逊系数判定机制区分有用信号分量与噪声分量,再采用SVD对有用信号分量进行降维;最后,对两次降噪保留的有用信号进行重构,得到降噪后的信号,并用钢梁实验和监测数据进行验证。仿真和钢梁实验结果表明,与小波软硬阈值法、VMD及VMD-小波降噪方法相比,OOA-VMD-SVD方法能够显著提高信噪比,对于监测数据也能更加有效地保留信号中的有用信息,为结构健康监测中的信号处理提供了一种高效、稳定的降噪方案。 展开更多
关键词 结构振动信号 变分模态分解 能量熵 奇异值分解 降噪
在线阅读 下载PDF
基于AVMHME和WSVD的风电机组主轴承故障诊断
8
作者 孙少华 卢坤鹏 《机械设计与制造》 北大核心 2025年第5期229-235,241,共8页
针对风电机组主轴承噪声干扰较多,故障难以准确诊断的问题,提出一种基于自适应变分多谐波模态提取(AVMHME)和线性峭度加权奇异值分解(WSVD)的故障诊断方法。首先利用Welch功率谱估计方法,得到谱图中主要峰值位置,推测信号的中心频率,其... 针对风电机组主轴承噪声干扰较多,故障难以准确诊断的问题,提出一种基于自适应变分多谐波模态提取(AVMHME)和线性峭度加权奇异值分解(WSVD)的故障诊断方法。首先利用Welch功率谱估计方法,得到谱图中主要峰值位置,推测信号的中心频率,其次利用鳑鮍鱼优化算法对变分多谐波模态提取方法中影响参数进行寻优,使用最优参数下的AVMHME方法对原始信号进行提取得到蕴含丰富故障信息的信号分量。随后通过WSVD方法对所得信号分量进行降噪处理,采用线性峭度表征各子分量故障特征信息,并对含有较多故障特征的降噪信号分量加权重构并对重构信号进行包络分析,从中诊断出微弱的风电机组主轴承故障特征频率成分。仿真信号及现场数据分析结果表明,所研究方法可以有效找出风电机组主轴承的微弱故障特征,实现主轴承故障的准确诊断。 展开更多
关键词 风电机组主轴承 Welch功率谱 变分模态多谐波提取 加权奇异值分解 鳑鮍鱼优化算法
在线阅读 下载PDF
应用奇异值分解(SVD)-主成分分析(PCA)组合模型定量圈定与评价腾冲地块锡钨和铅锌多金属找矿靶区 被引量:2
9
作者 郑澳月 费金娜 +3 位作者 陈永清 宁妍云 曹一琳 赵鹏大 《地学前缘》 北大核心 2025年第1期283-301,共19页
成矿元素或元素组在一个地质单元中的富集是成岩和成矿地质过程多阶段作用的产物。基于水系沉积物地球化学数据,主成分分析(principal component analysis,PCA)可识别成矿元素组。奇异值分解(singular value decomposition,SVD)可将成... 成矿元素或元素组在一个地质单元中的富集是成岩和成矿地质过程多阶段作用的产物。基于水系沉积物地球化学数据,主成分分析(principal component analysis,PCA)可识别成矿元素组。奇异值分解(singular value decomposition,SVD)可将成矿元素组主成分得分进一步分解为两个部分:(1)成矿元素组合区域异常分量,能够表征在地壳演化过程中,由各种地质作用(岩浆作用、沉积作用和/或变质作用)形成的有利于成矿的高背景区域;(2)成矿元素组合局部异常分量,能够表征成矿作用引起的,叠加在成矿元素组合区域异常分量之上的成矿元素组合局部异常分量,应用局部异常分量能够识别找矿靶区。本次研究,首先基于国家1∶200000水系沉积物地球化学数据,应用主成分分析建立不同类型的成矿元素组;其次,利用SVD从成矿元素组的主成分得分中识别出不同类型成矿过程引起的成矿元素组合局部异常分量;最后,应用局部异常分量识别找矿靶区。最终在腾冲地块圈定15处找矿靶区,其中Sn-W找矿靶区8处,Pb-Zn-Ag找矿靶区7处。预测Sn-W潜在资源量915 Mt,Pb-Zn-Ag潜在资源量792 Mt。 展开更多
关键词 svd PCA 成矿元素组合异常分量 地球化学块体 锡钨和铅锌多金属矿 腾冲地块 西南地区
在线阅读 下载PDF
基于改进SVD和LS-Prony的电机转子断条故障诊断 被引量:2
10
作者 贾朱植 康云娟 +2 位作者 祝洪宇 张博 宋向金 《电子测量技术》 北大核心 2025年第3期100-111,共12页
采用电机定子电流信号特征分析诊断转子断条故障时,基频两侧的故障特征频率和幅值是判断故障发生与否和严重程度的重要参数。FFT算法的诊断能力严重依赖于所分析的数据长度,最小二乘Prony分析算法虽然具有短时数据分析能力,但是该方法... 采用电机定子电流信号特征分析诊断转子断条故障时,基频两侧的故障特征频率和幅值是判断故障发生与否和严重程度的重要参数。FFT算法的诊断能力严重依赖于所分析的数据长度,最小二乘Prony分析算法虽然具有短时数据分析能力,但是该方法对噪声异常敏感,当电机低频低负载运行时同样存在故障特征提取能力不足和诊断失效的问题。为解决上述问题,提出改进奇异值分解和LS-PA算法相结合的转子断条故障诊断方法。首先采用按列截断方式重构奇异值分解矩阵,根据奇异值差商确定有效阶次,进而对定子电流信号进行预处理以适度抑制噪声,然后运用LS-PA算法对预处理后的信号做故障特征识别和诊断。有限元仿真和实验分析结果表明,所提出的方法能有效抑制电流信号噪声,具有短时数据高分辨率的诊断性能,在工频和变频供电时均能实现电机轻载到满载全工况稳定运行条件下的转子断条故障诊断,诊断性能高于经典的FFT方法。 展开更多
关键词 故障诊断 奇异值分解 最小二乘Prony算法 电机定子电流信号特征分析
在线阅读 下载PDF
改进VMD-SVD算法与SVM的齿轮箱状态识别
11
作者 何雷 刘溯奇 张皓惟 《机械设计与制造》 北大核心 2025年第7期86-90,96,共6页
针对特种车辆齿轮箱工作环境恶劣、状态识别困难的现实问题,这里提出了一种基于自适应优化变分模态分解(Variational Mode Decomposition,简称VMD)和奇异值分解(SVD)的特征值提取方法,并结合支持向量机(Support Vector Machine,SVM)构... 针对特种车辆齿轮箱工作环境恶劣、状态识别困难的现实问题,这里提出了一种基于自适应优化变分模态分解(Variational Mode Decomposition,简称VMD)和奇异值分解(SVD)的特征值提取方法,并结合支持向量机(Support Vector Machine,SVM)构建诊断模型,应用到齿轮箱的状态识别中。首先,针对VMD分解层数K值难确定问题,结合相关系数和阈值提取有效分量,确定最优分解层数K,完成对VMD分解的自适应优化。然后用改进后的VMD算法对振动信号进行分解,用相关系数筛选出蕴含故障信息最丰富的分量进行频谱分析和SVD特征值提取,将特征值输入到构建好的支持向量机诊断模型中,根据输出结果识别齿轮箱状态。研究结果表明,该方法能有效应用于特种车辆齿轮箱状态识别,诊断正确率达到95.36%,为恶劣工况下齿轮箱状态识别提供了一种有效的应用方案。 展开更多
关键词 齿轮箱 变分模态分解 奇异值分解 支持向量机
在线阅读 下载PDF
基于SVD-CKF的战术导弹气动参数在线辨识方法研究
12
作者 江未来 周思超 +1 位作者 后德龙 王耀南 《湖南大学学报(自然科学版)》 北大核心 2025年第8期151-157,共7页
在导弹气动参数辨识领域,传统扩展卡尔曼滤波(extended Kalman filter,EKF)算法往往计算复杂、计算精度低,且求解系统雅各比矩阵难.针对这个问题,本文提出了一种基于SVD-CKF的战术导弹气动参数在线辨识方法.利用容积卡尔曼滤波(cubature... 在导弹气动参数辨识领域,传统扩展卡尔曼滤波(extended Kalman filter,EKF)算法往往计算复杂、计算精度低,且求解系统雅各比矩阵难.针对这个问题,本文提出了一种基于SVD-CKF的战术导弹气动参数在线辨识方法.利用容积卡尔曼滤波(cubature Kalman fil-ter,CKF)的容积点线性化特性,避免了对雅各比矩阵的直接求解,从而降低了计算复杂度.同时,通过引入奇异值分解(singular value decomposition,SVD)技术,有效解决了传统CKF算法中可能导致协方差矩阵负定的情况,进一步提升了滤波稳定性.仿真结果表明,在六自由度战术导弹气动参数在线辨识问题中,SVD-CKF算法展现更高的辨识精度、更快的收敛速度以及更强的鲁棒性. 展开更多
关键词 在线参数辨识 容积卡尔曼滤波 奇异值分解 导弹
在线阅读 下载PDF
基于ACMD与K-SVD的滚动轴承微弱故障特征诊断 被引量:2
13
作者 牛柱强 张玮 +2 位作者 许书庆 张成城 胡鑫磊 《轴承》 北大核心 2025年第3期97-103,共7页
针对强背景噪声下滚动轴承故障特征难以提取的问题,提出了一种基于自适应啁啾模态分解(ACMD)和K-奇异值分解(K-SVD)的故障特征提取方法。采用ACMD自适应地将原始信号分解为不同的本征模态分量,提出一种新的衡量信号故障特征的信号特征... 针对强背景噪声下滚动轴承故障特征难以提取的问题,提出了一种基于自适应啁啾模态分解(ACMD)和K-奇异值分解(K-SVD)的故障特征提取方法。采用ACMD自适应地将原始信号分解为不同的本征模态分量,提出一种新的衡量信号故障特征的信号特征因子筛选包含故障信息丰富的模态分量作为训练信号,利用KSVD字典学习针对训练信号训练字典库,结合正交匹配追踪算法对原始信号进行重构得到稀疏信号,通过进一步的包络谱分析获取故障特征频率并作出故障诊断。仿真信号和试验研究表明,基于ACMD与K-SVD的方法能够有效提取强背景噪声下的滚动轴承故障特征,确定轴承故障类型。 展开更多
关键词 滚动轴承 故障诊断 特征提取 信号处理 奇异值分解
在线阅读 下载PDF
鹈鹕算法参数优化VMD联合SVDS的电机轴承故障诊断
14
作者 孙姿姣 周湘贞 李松洋 《机械设计》 北大核心 2025年第4期150-155,共6页
为减小噪声的干扰,增强轴承故障特征频率,实现轴承故障有效诊断,文中提出了鹈鹕算法(POA)优化变分模态分解(VMD)参数联合奇异值差分谱(SVDS)的轴承故障诊断新方法。针对VMD分解时模态层数k和平衡因子α难确定的问题,以本征模态分量(IMF... 为减小噪声的干扰,增强轴承故障特征频率,实现轴承故障有效诊断,文中提出了鹈鹕算法(POA)优化变分模态分解(VMD)参数联合奇异值差分谱(SVDS)的轴承故障诊断新方法。针对VMD分解时模态层数k和平衡因子α难确定的问题,以本征模态分量(IMF)包络熵最小为评价指标,通过POA进行参数优化;利用包络熵最小指标选取最优IMF模态,并对最优模态构建Hankel矩阵进行SVDS分析;通过SVDS确定信号重构阶数完成信号重构,并以Hilbert解调对重构信号进行包络分析。通过轴承仿真信号和实测信号对方法的有效性进行了验证,结果表明:所提方法增强了轴承故障特征频率,更容易实现故障的判别。 展开更多
关键词 变分模态分解 鹈鹕算法 奇异值差分谱 轴承 故障诊断
在线阅读 下载PDF
基于MI-SVD-UKF算法的农用柴油机SCR状态估计
15
作者 李绕强 王贵勇 +2 位作者 王煜华 袁永明 李志维 《农业工程学报》 北大核心 2025年第16期99-110,共12页
为减少农用柴油机选择性催化还原(selective catalytic reduction,SCR)催化器传感器数量,精确提供SCR状态反馈,该研究提出使用多新息奇异值分解-无迹卡尔曼滤波(multi innovation-singular value decomposition-unscented Kalman filter... 为减少农用柴油机选择性催化还原(selective catalytic reduction,SCR)催化器传感器数量,精确提供SCR状态反馈,该研究提出使用多新息奇异值分解-无迹卡尔曼滤波(multi innovation-singular value decomposition-unscented Kalman filter, MI-SVD-UKF)算法对SCR系统下游NO_(x)浓度、NH_(3)浓度和氨覆盖率3个状态量进行估计。首先基于Matlab/Simulink对SCR系统进行物理建模,并利用最小二乘法对模型参数进行辨识,以模拟催化器的动态变化。针对无迹卡尔曼滤波在估计SCR状态时存在对历史数据利用率低,仿真中出现协方差矩阵非正定情况使算法失效的问题,利用多新息MI(multi innovation)理论、奇异值SVD(singular value decomposition)分解和无迹卡尔曼滤波UKF(unscented Kalman filter)算法相结合对SCR状态进行在线估计。根据世界统一瞬态循环(world harmonized transient cycle, WHTC)排放测试标准,利用热循环对模型观测算法进行仿真和验证。试验验证结果表明:基于MI-SVD-UKF算法对SCR下游NO_(x)浓度、NH_(3)浓度和氨覆盖率估计值的平均绝对误差(MAE)分别为0.807 mg/m^(3)、0.040 mg/m^(3)和0.007,能对SCR系统状态进行精确估计,与传统UKF相比,其MAE分别降低了0.699 mg/m^(3)、0.142 mg/m^(3)和0.098,与多新息扩展卡尔曼滤波(multi innovation extended Kalman filter,MIEKF)相比,其MAE分别降低了3.232 mg/m^(3)、0.630 mg/m^(3)和0.100;在3个估计状态量初始值均设置为0时,经过11 s可收敛到状态初始值,收敛速度较快,证明了所提算法能准确估计SCR系统状态,可为实现SCR控制提供状态反馈。 展开更多
关键词 柴油机 状态估计 SCR 多新息理论 奇异值分解 无迹卡尔曼滤波
在线阅读 下载PDF
基于TFG-SVD-1DCNN的液压优先阀智能故障诊断方法
16
作者 何瑶 熊晓燕 +2 位作者 王伟杰 李翔宇 刘会军 《机电工程》 北大核心 2025年第7期1287-1293,共7页
液压优先阀连接在液压泵、蓄能器和油箱增压腔之间,针对其容易受到多路干扰的影响,以及采用传统的液压测试方法对优先阀故障识别精度不足的问题,提出了一种基于时频图结构数据奇异值分解与一维卷积神经网络(TFG-SVD-1DCNN)的液压阀智能... 液压优先阀连接在液压泵、蓄能器和油箱增压腔之间,针对其容易受到多路干扰的影响,以及采用传统的液压测试方法对优先阀故障识别精度不足的问题,提出了一种基于时频图结构数据奇异值分解与一维卷积神经网络(TFG-SVD-1DCNN)的液压阀智能故障诊断方法。首先,采用短时傅里叶变换(STFT)的方法分析了包含故障信息的信号,提取了信号在不同时间段内频率成分的详细信息,得到了时频矩阵;然后,使用时频矩阵在频率维度上的特征构造了图结构数据(GSD),获得了边的连接关系和边的权重等信息,再利用这些信息生成了图结构数据的邻接矩阵,充分保留了每个样本的空间特征;最后,采用奇异值分解(SVD)方法对图结构数据的邻接矩阵进行了降维,将降维之后的主要特征输入到一维卷积神经网络(1D-CNN)中进行了故障分类,并利用仿真数据验证了该方法在优先阀故障诊断方面的性能。研究结果表明:对于优先阀正向无法打开或关断以及反向无法打开或关断4种故障类型,采用智能故障诊断方法所得的平均准确率为99.7%。该研究可以为液压阀故障检测提供一种有效的方法。 展开更多
关键词 液压系统 液压阀 流量优先阀 时频图结构数据奇异值分解 一维卷积神经网络 短时傅里叶变换 图结构数据
在线阅读 下载PDF
基于在线参数辨识和SVD-AUKF的锂电池荷电状态估计 被引量:1
17
作者 丁璨 王滔 +1 位作者 张露露 郭庆 《南方电网技术》 北大核心 2025年第7期170-181,共12页
动力电池在复杂多变工况下,离线参数辨识无法实时反映电池动态特性导致参数辨识精度低,无迹卡尔曼滤波(untraceable Kalman filter,UKF)在估计电池荷电状态(State of charge,SOC)时对噪声处理十分有限,同时在处理协方差矩阵时出现非正... 动力电池在复杂多变工况下,离线参数辨识无法实时反映电池动态特性导致参数辨识精度低,无迹卡尔曼滤波(untraceable Kalman filter,UKF)在估计电池荷电状态(State of charge,SOC)时对噪声处理十分有限,同时在处理协方差矩阵时出现非正定问题会导致算法波动和估计失效。基于双极化(dual polarization,DP)电路模型提出了遗忘因子递推最小二乘法(forgotten factor recursive least squares,FFRLS)和奇异值分解-自适应无迹卡尔曼滤波法(singular value decomposition-adaptive untraceable Kalman filter,SVD-AUKF)对电池SOC进行在线估计。仿真结果表明,在复杂工况下(美国联邦城市运行工况),与真实SOC值进行比较,SVD-AUKF进行模拟验证时平均绝对误差和均方根误差分别为0.5286%和0.5447%,在传统UKF算法基础上分别提高了57.96%和63.3%,进一步表明SVD-AUKF准确性和稳定性更高。 展开更多
关键词 荷电状态 双极化模型 参数辨识 奇异值分解 自适应无迹卡尔曼滤波
在线阅读 下载PDF
基于APSO-SSD-SVD的特高压换流站OLTC振动信号降噪方法 被引量:2
18
作者 骆钊 张涛 +3 位作者 阮彦俊 石延辉 林铭良 张杨 《电力系统保护与控制》 EI CSCD 北大核心 2024年第21期13-23,共11页
随着中国特高压交直流换流站的大规模投运,有载分接开关(on-load tap changer, OLTC)已成为特高压换流站中发生故障较多的设备之一。针对强背景噪声环境下特高压换流站OLTC故障特征难以提取的问题,提出一种基于自适应粒子群算法优化奇... 随着中国特高压交直流换流站的大规模投运,有载分接开关(on-load tap changer, OLTC)已成为特高压换流站中发生故障较多的设备之一。针对强背景噪声环境下特高压换流站OLTC故障特征难以提取的问题,提出一种基于自适应粒子群算法优化奇异谱分解和奇异值分解的方法。首先,利用自适应粒子群优化(adaptive particle swarm optimization, APSO)算法对奇异谱分解算法中的模态参数进行优化,选取最优分解模态数。其次,基于最大峭度准则选取最佳奇异谱分量。然后,确定最佳重构阶数,通过奇异值分解重构信号,从而达到信号降噪的目的。将所提方法应用于仿真信号和实验信号,结果表明所提方法的信噪比达到23.302,均方根误差仅为0.004,并且波形相似参数高达0.998,优于其他降噪方法。所提方法能够更有效地实现对特高压换流站OLTC振动信号的降噪,为辅助运维人员诊断OLTC状态提供参考。 展开更多
关键词 有载分接开关 自适应粒子群优化算法 奇异谱分解 奇异值分解 精细复合多尺度散布熵 信号降噪
在线阅读 下载PDF
基于EMD-SVD的矿山微震信号降噪方法及其应用 被引量:1
19
作者 朱权洁 隋龙琨 +2 位作者 陈学习 欧阳振华 刘晓辉 《安全与环境工程》 CAS CSCD 北大核心 2024年第3期110-119,共10页
为了提高微震监测技术对微震信号分析处理的准确性,充分提取微震信号波形中的有效信息,针对矿山微震信号非平稳、非线性的特点,提出了一种基于经验模态分解(EMD)和奇异值分解(SVD)的联合降噪方法。该方法首先通过EMD分解获得信号的IMF分... 为了提高微震监测技术对微震信号分析处理的准确性,充分提取微震信号波形中的有效信息,针对矿山微震信号非平稳、非线性的特点,提出了一种基于经验模态分解(EMD)和奇异值分解(SVD)的联合降噪方法。该方法首先通过EMD分解获得信号的IMF分量,利用相关系数、方差贡献率和相似度对IMF分量进行了优选;然后使用优选后的IMF分量重构一维微震信号时间序列的相空间数据,经过SVD分解后,利用奇异值能量百分比确立了SVD重构阶数,并根据SVD恢复原理得到了降噪后的一维微震时间序列;最后以山东某矿现场矿山爆破为例,采用不同降噪方法对3类典型微震信号进行了降噪处理,并对其降噪效果进行了对比分析。结果表明,EMD-SVD降噪方法与传统降噪方法相比,其平均信噪比提高了35%,平均均方根误差降低了50%,有效剔除了微震信号的噪声分量,保留了信号的特征信息。该研究对分析矿山微震信号、微震事件定位及煤矿动力灾害监测具有重要意义。 展开更多
关键词 矿山安全 微震监测技术 微震信号降噪 经验模态分解 奇异值分解
在线阅读 下载PDF
基于天牛须优化算法和LP-SWT-SVD的鲁棒图像水印技术
20
作者 吴捷 刘振兴 马小虎 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期45-52,共8页
为了有效保护数字媒体的知识产权,提出一种基于拉普拉斯金字塔和平稳小波变换(Stationary Wavelet Transform,SWT)及奇异值分解(Singular Value Decomposition,SVD)的图像水印嵌入算法。该算法首先对原始图像进行拉普拉斯金字塔分解,然... 为了有效保护数字媒体的知识产权,提出一种基于拉普拉斯金字塔和平稳小波变换(Stationary Wavelet Transform,SWT)及奇异值分解(Singular Value Decomposition,SVD)的图像水印嵌入算法。该算法首先对原始图像进行拉普拉斯金字塔分解,然后对得到的残差图像进行一级平稳小波变换,得到低频子带LL1和高频子带HH1,分别对其进行SVD分解,并将SVD分解后的水印分别嵌入低频和高频子带的奇异值矩阵中,使用天牛须算法(Beetle Antennae Search,BAS)优化水印嵌入过程。水印检测时,将从LL1和HH1子带中提取的水印进行比较,选择效果较好的作为最终结果。仿真实验与其他文献的对比分析证明该算法不可见性和鲁棒性都较好。 展开更多
关键词 拉普拉斯金字塔 平稳小波变换 奇异值分解 天牛须算法
在线阅读 下载PDF
上一页 1 2 118 下一页 到第
使用帮助 返回顶部