This paper deals with the existence of positive solutions to the singular boundary value problemwhere q(t) may be singular at t = 0 and t = 1, f(t,y) may be superlinear at y =∞ and singular, at y = 0.
In this article, we consider the existence of two positive solutions to nonlinear second order three-point singular boundary value problem: -u′′(t) = λf(t, u(t)) for all t ∈ (0, 1) subjecting to u(0) = ...In this article, we consider the existence of two positive solutions to nonlinear second order three-point singular boundary value problem: -u′′(t) = λf(t, u(t)) for all t ∈ (0, 1) subjecting to u(0) = 0 and αu(η) = u(1), where η ∈ (0, 1), α ∈ [0, 1), and λ is a positive parameter. The nonlinear term f(t, u) is nonnegative, and may be singular at t = 0, t = 1, and u = 0. By the fixed point index theory and approximation method, we establish that there exists λ* ∈ (0, +∞], such that the above problem has at least two positive solutions for any λ ∈ (0, λ*) under certain conditions on the nonlinear term f.展开更多
Making use of upper and lower solutions and analytical method, the author studies theexistence of positive solution for the singular equation x + f(t, z) = 0 satisfying nonlinear boundary conditions: x (0) = 0, h(x (1...Making use of upper and lower solutions and analytical method, the author studies theexistence of positive solution for the singular equation x + f(t, z) = 0 satisfying nonlinear boundary conditions: x (0) = 0, h(x (1), x’ (1)) = 0, g (z (0), x’(0)) = 0, and x (1) = 0,which extends the result of J. V. Baxley.展开更多
This paper deals with the singular nonlinear third-order periodic boundary value problem u'' + p(3)u = f (t, u), 0 less than or equal to t less than or equal to 2pi, with u((i)) (0) = u((i)) (2pi), i = 0, 1, 2...This paper deals with the singular nonlinear third-order periodic boundary value problem u'' + p(3)u = f (t, u), 0 less than or equal to t less than or equal to 2pi, with u((i)) (0) = u((i)) (2pi), i = 0, 1, 2, where p is an element of (Graphics) and f is singular at t = 0, t = 1 and u = 0. Under suitable weaker conditions than those of [1], it is proved by constructing a special cone in C[0, 2pi] and employing the fixed point index theory that the problem has at least one or at least two positive solutions.展开更多
1. Introduction We consider the singular nonlinear boundary value problem where l=v+3/v-1,l+1 is the critical exponent of the embedding of weighted Sobolev space Wt21,2(O, +∞) into Lt2q(O, ∞), v>2. When v=N-1...1. Introduction We consider the singular nonlinear boundary value problem where l=v+3/v-1,l+1 is the critical exponent of the embedding of weighted Sobolev space Wt21,2(O, +∞) into Lt2q(O, ∞), v>2. When v=N-1 we can get the radial solutions of problem where 2*=2N/N-2 is the critical exponent of the Sobolev embedding H1(Rn)→LQ(RN). Kurtz has discussed the existence of κ-node solution of (1.1), (1.2) for each κ∈N U{0} when the growth rate of |u|l-1u+f(u) is lower then |u|v+3/v-1 i.e.展开更多
In this paper we study the singular perturbation of boundary value problems with perturbations both in the operator and in the interval ends. So as to prove the existence and uniqueness of solution of perturbed proble...In this paper we study the singular perturbation of boundary value problems with perturbations both in the operator and in the interval ends. So as to prove the existence and uniqueness of solution of perturbed problem, to establish the asymptotic expression involving three parameters. Thus, the iterative equation of finding the asymptotic solution is derived and the estimation of the remainder term is given out. We extend results of [l]-[5].展开更多
By making use of the differential inequalities, in this paper we study the uniqueness of solutions of the two kinds of the singularly perturbed boundary value problems for the nonlinear third order ordinary differenti...By making use of the differential inequalities, in this paper we study the uniqueness of solutions of the two kinds of the singularly perturbed boundary value problems for the nonlinear third order ordinary differential equation with a small parameter ε>0: where i=1, 2; a(?)(ε), β(ε) and γ(ε) are functions defined on (0, ε_o], while ε_o>0 is a constant.This paper is the continuation of our works [4, 6].展开更多
We consider the singular Dirichlet problem for the Monge-Ampère type equation■=0,whereΩis a strictly convex and bounded smooth domain in■is positive and strictly decreasing in(0,∞)with■is positive inΩ.We ob...We consider the singular Dirichlet problem for the Monge-Ampère type equation■=0,whereΩis a strictly convex and bounded smooth domain in■is positive and strictly decreasing in(0,∞)with■is positive inΩ.We obtain the existence,nonexistence and global asymptotic behavior of the convex solution to such a problem for more general b and g.Our approach is based on the Karamata regular variation theory and the construction of suitable sub-and super-solutions.展开更多
This paper investigates a class of 2nth-order singular superlinear problems with Strum-Liouville boundary conditions. We obtain a necessary and sufficient condition for the existence of C 2 n- 2 [0, 1] positive soluti...This paper investigates a class of 2nth-order singular superlinear problems with Strum-Liouville boundary conditions. We obtain a necessary and sufficient condition for the existence of C 2 n- 2 [0, 1] positive solutions, and a sufficient condition, a necessary condition for the existence of C 2 n-1 [0, 1] positive solutions. Relations between the positive solutions and the Green’s functions are depicted. The results are used to judge nonexistence or existence of positive solutions for given boundary value problems.展开更多
文摘This paper deals with the existence of positive solutions to the singular boundary value problemwhere q(t) may be singular at t = 0 and t = 1, f(t,y) may be superlinear at y =∞ and singular, at y = 0.
基金supported by the National Natural Science Foundation of China (11071149, 10771128)the NSF of Shanxi Province (2006011002, 2010011001-1)
文摘In this article, we consider the existence of two positive solutions to nonlinear second order three-point singular boundary value problem: -u′′(t) = λf(t, u(t)) for all t ∈ (0, 1) subjecting to u(0) = 0 and αu(η) = u(1), where η ∈ (0, 1), α ∈ [0, 1), and λ is a positive parameter. The nonlinear term f(t, u) is nonnegative, and may be singular at t = 0, t = 1, and u = 0. By the fixed point index theory and approximation method, we establish that there exists λ* ∈ (0, +∞], such that the above problem has at least two positive solutions for any λ ∈ (0, λ*) under certain conditions on the nonlinear term f.
文摘Making use of upper and lower solutions and analytical method, the author studies theexistence of positive solution for the singular equation x + f(t, z) = 0 satisfying nonlinear boundary conditions: x (0) = 0, h(x (1), x’ (1)) = 0, g (z (0), x’(0)) = 0, and x (1) = 0,which extends the result of J. V. Baxley.
文摘This paper deals with the singular nonlinear third-order periodic boundary value problem u'' + p(3)u = f (t, u), 0 less than or equal to t less than or equal to 2pi, with u((i)) (0) = u((i)) (2pi), i = 0, 1, 2, where p is an element of (Graphics) and f is singular at t = 0, t = 1 and u = 0. Under suitable weaker conditions than those of [1], it is proved by constructing a special cone in C[0, 2pi] and employing the fixed point index theory that the problem has at least one or at least two positive solutions.
文摘1. Introduction We consider the singular nonlinear boundary value problem where l=v+3/v-1,l+1 is the critical exponent of the embedding of weighted Sobolev space Wt21,2(O, +∞) into Lt2q(O, ∞), v>2. When v=N-1 we can get the radial solutions of problem where 2*=2N/N-2 is the critical exponent of the Sobolev embedding H1(Rn)→LQ(RN). Kurtz has discussed the existence of κ-node solution of (1.1), (1.2) for each κ∈N U{0} when the growth rate of |u|l-1u+f(u) is lower then |u|v+3/v-1 i.e.
基金This research was supported by Fujian Science Foundation.
文摘In this paper we study the singular perturbation of boundary value problems with perturbations both in the operator and in the interval ends. So as to prove the existence and uniqueness of solution of perturbed problem, to establish the asymptotic expression involving three parameters. Thus, the iterative equation of finding the asymptotic solution is derived and the estimation of the remainder term is given out. We extend results of [l]-[5].
基金Project supported by the National Natural Science Foundation of China.
文摘By making use of the differential inequalities, in this paper we study the uniqueness of solutions of the two kinds of the singularly perturbed boundary value problems for the nonlinear third order ordinary differential equation with a small parameter ε>0: where i=1, 2; a(?)(ε), β(ε) and γ(ε) are functions defined on (0, ε_o], while ε_o>0 is a constant.This paper is the continuation of our works [4, 6].
基金supported by Shandong Provincial NSF(ZR2022MA020).
文摘We consider the singular Dirichlet problem for the Monge-Ampère type equation■=0,whereΩis a strictly convex and bounded smooth domain in■is positive and strictly decreasing in(0,∞)with■is positive inΩ.We obtain the existence,nonexistence and global asymptotic behavior of the convex solution to such a problem for more general b and g.Our approach is based on the Karamata regular variation theory and the construction of suitable sub-and super-solutions.
基金Research supported by the National Natural Science Foundation of China (10871116)the Natural Science Foundation of Shandong Province of China (ZR2010AM005)the Doctoral Program Foundation of Education Ministry of China (200804460001)
文摘This paper investigates a class of 2nth-order singular superlinear problems with Strum-Liouville boundary conditions. We obtain a necessary and sufficient condition for the existence of C 2 n- 2 [0, 1] positive solutions, and a sufficient condition, a necessary condition for the existence of C 2 n-1 [0, 1] positive solutions. Relations between the positive solutions and the Green’s functions are depicted. The results are used to judge nonexistence or existence of positive solutions for given boundary value problems.