The tension and compression of face-centered-cubic high-entropy alloy(HEA) nanowires are significantly asymmetric, but the tension–compression asymmetry in nanoscale body-centered-cubic(BCC) HEAs is still unclear. In...The tension and compression of face-centered-cubic high-entropy alloy(HEA) nanowires are significantly asymmetric, but the tension–compression asymmetry in nanoscale body-centered-cubic(BCC) HEAs is still unclear. In this study,the tension–compression asymmetry of the BCC Al Cr Fe Co Ni HEA nanowire is investigated using molecular dynamics simulations. The results show a significant asymmetry in both the yield and flow stresses, with BCC HEA nanowire stronger under compression than under tension. The strength asymmetry originates from the completely different deformation mechanisms in tension and compression. In compression, atomic amorphization dominates plastic deformation and contributes to the strengthening, while in tension, deformation twinning prevails and weakens the HEA nanowire.The tension–compression asymmetry exhibits a clear trend of increasing with the increasing nanowire cross-sectional edge length and decreasing temperature. In particular, the compressive strengths along the [001] and [111] crystallographic orientations are stronger than the tensile counterparts, while the [110] crystallographic orientation shows the exactly opposite trend. The dependences of tension–compression asymmetry on the cross-sectional edge length, crystallographic orientation,and temperature are explained in terms of the deformation behavior of HEA nanowire as well as its variations caused by the change in these influential factors. These findings may deepen our understanding of the tension–compression asymmetry of the BCC HEA nanowires.展开更多
Populus alba‘Berolinensis’is a fast-growing,high-yielding species with strong biotic and abiotic stress resistance,and widely planted for timber,shelter belts and aesthetic purposes.In this study,molecular developme...Populus alba‘Berolinensis’is a fast-growing,high-yielding species with strong biotic and abiotic stress resistance,and widely planted for timber,shelter belts and aesthetic purposes.In this study,molecular development is explored and the important genes regulating xylem forma-tion in P.alba‘Berolinensis’under artificial bending treat-ments was identified.Anatomical investigation indicated that tension wood(TW)was characterized by eccentric growth of xylem and was enriched in cellulose;the degree of ligni-fication was lower than for normal wood(NW)and oppo-site wood(OW).RNA-Seq-based transcriptome analysis was performed using developing xylem from three wood types(TW,OW and NW).A large number of differentially expressed genes(DEGs)were screened and 4889 counted.In GO and KEGG enrichment results,genes involved in plant hormone signal transduction,phenylpropanoid biosynthesis,and cell wall and secondary cell wall biogenesis play major roles in xylem development under artificial bending.Eight expansin(PalEXP)genes were identified from the RNA-seq data;four were differentially expressed during tension wood formation.Phylogenetic analysis indicated that PalEXLB1 belongs to the EXPB subfamily and that the other PalEXPs are members of the EXPA subfamily.A transcriptional regulatory network construction showed 10 transcription factors located in the first and second layers upstream of EXP,including WRKY,ERF and bHLH.RT‒qPCR analy-sis in leaves,stems and roots combined with transcriptome analysis suggests that PalEXPA2,PalEXPA4 and PalEXPA15 play significant regulatory roles in cell wall formation during tension wood development.The candidate genes involved in xylem cell wall development during tension wood formation marks an important step toward identifying the molecular regulatory mechanism of xylem development and wood property improvement in P.alba‘Berolinensis’.展开更多
Membrane tension plays a crucial role in various fundamental cellular processes,with one notable example being the T cell-mediated elimination of tumor cells through perforin-induced membrane perforation by amplifying...Membrane tension plays a crucial role in various fundamental cellular processes,with one notable example being the T cell-mediated elimination of tumor cells through perforin-induced membrane perforation by amplifying cellular force.However,the mechanisms governing the regulation of biomolecular activities at the cell interface by membrane tension remain elusive.In this study,we investigated the correlation between membrane tension and poration activity of melittin,a prototypical pore-forming peptide,using dynamic giant unilamellar vesicle leakage assays combined with flickering tension analysis,molecular dynamics simulations,and live cell assays.The results demonstrate that an increase in membrane tension enhances the activity of melittin,particularly near its critical pore-forming concentration.Moreover,peptide actions such as binding,insertion,and aggregation in the membrane further influence the evolution of membrane tension.Live cell experiments reveal that artificially enhancing membrane tension effectively enhances melittin’s ability to induce pore formation and disrupt membranes,resulting in up to a ten-fold increase in A549 cell mortality when exposed to a concentration of 2.0-μg·mL^(-1)melittin.Our findings elucidate the relationship between membrane tension and the mechanism of action as well as pore-forming efficiency of melittin,while providing a practical mechanical approach for regulating functional activity of molecules at the cell-membrane interface.展开更多
With the theoretical and technological developments related to cratonic strike-slip faults,the Shuntuoguole Low Uplift in the Tarim Basin has attracted considerable attention recently.Affected by multi-stage tectonic ...With the theoretical and technological developments related to cratonic strike-slip faults,the Shuntuoguole Low Uplift in the Tarim Basin has attracted considerable attention recently.Affected by multi-stage tectonic movements,the strike-slip faults have controlled the distribution of hydrocarbon resources owing to the special fault characteristics and fault-related structures.In contrast,the kinematics and formation mechanism of strike-slip faults in buried sedimentary basins are difficult to investigate,limiting the discussion of these faults and hydrocarbon accumulation.In this study,we identified the characteristics of massive sigmoidal tension gashes(STGs)that formed in the Shunnan area of the Tarim Basin.High-resolution three-dimensional seismic data and attribute analyses were used to investigate their geometric and kinematic characteristics.Then,the stress state of each point of the STGs was calculated using seismic curvature attributes.Finally,the formation mechanism of the STGs and their roles in controlling hydrocarbon migration and accumulation were discussed.The results suggest that:(1)the STGs developed in the Shunnan area have a wide distribution,with a tensile fault arranged in an enéchelon pattern,showing an S-shaped bending.These STGs formed in multiple stages,and differential rotation occurred along the direction of strike-slip stress during formation.(2)Near the principal displacement zone of the strike-slip faults,the stress value of the STGs was higher,gradually decreasing at both ends.The shallow layer deformation was greater than the deep layer deformation.(3)STGs are critical for connecting source rocks,migrating oil and gas,sealing horizontally,and developing efficient reservoirs.This study not only provides seismic evidence for the formation and evolution of super large STGs,but also provides certain guidance for oil and gas exploration in this area.展开更多
Crealet is the world leader in sophisticated warp feeding technology and tailored solutions.Controlled warp tension stands also for controlled fabric quality.The Swiss firm presents its latest developments for technic...Crealet is the world leader in sophisticated warp feeding technology and tailored solutions.Controlled warp tension stands also for controlled fabric quality.The Swiss firm presents its latest developments for technical textile applications at Techtextil 2024 in Frankfurt,Germany.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No.12272118)the National Key Research and Development Program of China (Grant No.2022YFE03030003)。
文摘The tension and compression of face-centered-cubic high-entropy alloy(HEA) nanowires are significantly asymmetric, but the tension–compression asymmetry in nanoscale body-centered-cubic(BCC) HEAs is still unclear. In this study,the tension–compression asymmetry of the BCC Al Cr Fe Co Ni HEA nanowire is investigated using molecular dynamics simulations. The results show a significant asymmetry in both the yield and flow stresses, with BCC HEA nanowire stronger under compression than under tension. The strength asymmetry originates from the completely different deformation mechanisms in tension and compression. In compression, atomic amorphization dominates plastic deformation and contributes to the strengthening, while in tension, deformation twinning prevails and weakens the HEA nanowire.The tension–compression asymmetry exhibits a clear trend of increasing with the increasing nanowire cross-sectional edge length and decreasing temperature. In particular, the compressive strengths along the [001] and [111] crystallographic orientations are stronger than the tensile counterparts, while the [110] crystallographic orientation shows the exactly opposite trend. The dependences of tension–compression asymmetry on the cross-sectional edge length, crystallographic orientation,and temperature are explained in terms of the deformation behavior of HEA nanowire as well as its variations caused by the change in these influential factors. These findings may deepen our understanding of the tension–compression asymmetry of the BCC HEA nanowires.
基金funded by the Fundamental Research Funds for the Central Universities(2572019CT02)Heilongjiang Touyan Innovation Team Program(Tree Genetics and Breeding Innovation Team)The Overseas Expertise Introduction Project for Discipline Innovation(B16010).
文摘Populus alba‘Berolinensis’is a fast-growing,high-yielding species with strong biotic and abiotic stress resistance,and widely planted for timber,shelter belts and aesthetic purposes.In this study,molecular development is explored and the important genes regulating xylem forma-tion in P.alba‘Berolinensis’under artificial bending treat-ments was identified.Anatomical investigation indicated that tension wood(TW)was characterized by eccentric growth of xylem and was enriched in cellulose;the degree of ligni-fication was lower than for normal wood(NW)and oppo-site wood(OW).RNA-Seq-based transcriptome analysis was performed using developing xylem from three wood types(TW,OW and NW).A large number of differentially expressed genes(DEGs)were screened and 4889 counted.In GO and KEGG enrichment results,genes involved in plant hormone signal transduction,phenylpropanoid biosynthesis,and cell wall and secondary cell wall biogenesis play major roles in xylem development under artificial bending.Eight expansin(PalEXP)genes were identified from the RNA-seq data;four were differentially expressed during tension wood formation.Phylogenetic analysis indicated that PalEXLB1 belongs to the EXPB subfamily and that the other PalEXPs are members of the EXPA subfamily.A transcriptional regulatory network construction showed 10 transcription factors located in the first and second layers upstream of EXP,including WRKY,ERF and bHLH.RT‒qPCR analy-sis in leaves,stems and roots combined with transcriptome analysis suggests that PalEXPA2,PalEXPA4 and PalEXPA15 play significant regulatory roles in cell wall formation during tension wood development.The candidate genes involved in xylem cell wall development during tension wood formation marks an important step toward identifying the molecular regulatory mechanism of xylem development and wood property improvement in P.alba‘Berolinensis’.
基金supported by the National Natural Science Foundation of China(Grant Nos.12274307,32230063,21774092,and 12347102)the Basic and Applied Basic Research Foundation of Guangdong Province,China(Grant No.2023A1515011610).
文摘Membrane tension plays a crucial role in various fundamental cellular processes,with one notable example being the T cell-mediated elimination of tumor cells through perforin-induced membrane perforation by amplifying cellular force.However,the mechanisms governing the regulation of biomolecular activities at the cell interface by membrane tension remain elusive.In this study,we investigated the correlation between membrane tension and poration activity of melittin,a prototypical pore-forming peptide,using dynamic giant unilamellar vesicle leakage assays combined with flickering tension analysis,molecular dynamics simulations,and live cell assays.The results demonstrate that an increase in membrane tension enhances the activity of melittin,particularly near its critical pore-forming concentration.Moreover,peptide actions such as binding,insertion,and aggregation in the membrane further influence the evolution of membrane tension.Live cell experiments reveal that artificially enhancing membrane tension effectively enhances melittin’s ability to induce pore formation and disrupt membranes,resulting in up to a ten-fold increase in A549 cell mortality when exposed to a concentration of 2.0-μg·mL^(-1)melittin.Our findings elucidate the relationship between membrane tension and the mechanism of action as well as pore-forming efficiency of melittin,while providing a practical mechanical approach for regulating functional activity of molecules at the cell-membrane interface.
基金Thanks to the Northwest Oilfield Branch,SINOPEC,for providing the seismic data.We thank Dr.Yi-Duo Liu of University of Houston,Ying-Chang Cao and Fang Hao of China University of Petroleum(East China)for their constructive suggestions of this manuscript.We also thank two anonymous reviewers for their comments that helped us to improve the manuscript.This research is jointly supported by the National Natural Science Foundation of China(No.42272155)the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA14010301)+1 种基金the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(Grant No.41821002)National Natural Science Foundation of China(No.41702138).
文摘With the theoretical and technological developments related to cratonic strike-slip faults,the Shuntuoguole Low Uplift in the Tarim Basin has attracted considerable attention recently.Affected by multi-stage tectonic movements,the strike-slip faults have controlled the distribution of hydrocarbon resources owing to the special fault characteristics and fault-related structures.In contrast,the kinematics and formation mechanism of strike-slip faults in buried sedimentary basins are difficult to investigate,limiting the discussion of these faults and hydrocarbon accumulation.In this study,we identified the characteristics of massive sigmoidal tension gashes(STGs)that formed in the Shunnan area of the Tarim Basin.High-resolution three-dimensional seismic data and attribute analyses were used to investigate their geometric and kinematic characteristics.Then,the stress state of each point of the STGs was calculated using seismic curvature attributes.Finally,the formation mechanism of the STGs and their roles in controlling hydrocarbon migration and accumulation were discussed.The results suggest that:(1)the STGs developed in the Shunnan area have a wide distribution,with a tensile fault arranged in an enéchelon pattern,showing an S-shaped bending.These STGs formed in multiple stages,and differential rotation occurred along the direction of strike-slip stress during formation.(2)Near the principal displacement zone of the strike-slip faults,the stress value of the STGs was higher,gradually decreasing at both ends.The shallow layer deformation was greater than the deep layer deformation.(3)STGs are critical for connecting source rocks,migrating oil and gas,sealing horizontally,and developing efficient reservoirs.This study not only provides seismic evidence for the formation and evolution of super large STGs,but also provides certain guidance for oil and gas exploration in this area.
文摘Crealet is the world leader in sophisticated warp feeding technology and tailored solutions.Controlled warp tension stands also for controlled fabric quality.The Swiss firm presents its latest developments for technical textile applications at Techtextil 2024 in Frankfurt,Germany.