The interference of selective higher-order modes in optical fibers is investigated both theoretically and experimentally. It has been demonstrated that by coupling the LP01 mode in a step-index single-mode fiber (SMF)...The interference of selective higher-order modes in optical fibers is investigated both theoretically and experimentally. It has been demonstrated that by coupling the LP01 mode in a step-index single-mode fiber (SMF) to the LP0m modes in step-index multimode fibers (MMFs) with different parameters, one can selectively generate higher-order modes and construct all-fiber interferometers. The research presented in this paper forms a basis of a new type of fiber devices with potential applications in fiber sensing, optical fiber communications, and optical signal processing.展开更多
提出并验证了一种基于可调有源双耦合器环级联复合腔(Active dual-coupler ring based compound-cavity,ADCR-CC)滤波器的2μm波段单纵模(Single-longitudinal-mode,SLM)铥钬共掺光纤激光器。将具有可调滤波带宽和透射率的ADCR-CC滤波...提出并验证了一种基于可调有源双耦合器环级联复合腔(Active dual-coupler ring based compound-cavity,ADCR-CC)滤波器的2μm波段单纵模(Single-longitudinal-mode,SLM)铥钬共掺光纤激光器。将具有可调滤波带宽和透射率的ADCR-CC滤波器与光纤布拉格光栅(Fiber Bragg grating,FBG)结合,实现了SLM激光输出。当主腔和复合腔的泵浦功率分别为1.8 W和1.1 W时,测得的激光器输出波长为2048.510 nm,光信噪比高达83.08 dB,90 min内的最大光谱中心波长和光谱峰值功率波动分别为0.006 nm和0.19 dB,激光器输出功率为50.03 mW。使用等强度悬臂梁对FBG引入应变调节,SLM激光可在1.45 nm范围内实现波长的可调谐输出。展开更多
A fiber-optic confocal microscope has been analyzed by Fourier optics.It is found that the detected light intensity has three parts,each of which is depennted on the coupled lens,the detective lens,and the part compri...A fiber-optic confocal microscope has been analyzed by Fourier optics.It is found that the detected light intensity has three parts,each of which is depennted on the coupled lens,the detective lens,and the part comprised of the fiber and the microprobe.The simulated results show that the less the value of the parameter A is,which is dependent on the fiber and microprobe,the higher the axial resolution of the system is. For the case,as A→∞, the axial resolution is zero,which is corresponding to the conventional microscope.as A≤1,the axial resolution changes slightly,and is close to the optimal value,which is corresponding to the perfect confocal microscope.when the reflective loss takes place at the end of fiber,the contrast of axial intensity will decrease.All that will help the design of endoscope with confocal microscope at cellular level.展开更多
文摘The interference of selective higher-order modes in optical fibers is investigated both theoretically and experimentally. It has been demonstrated that by coupling the LP01 mode in a step-index single-mode fiber (SMF) to the LP0m modes in step-index multimode fibers (MMFs) with different parameters, one can selectively generate higher-order modes and construct all-fiber interferometers. The research presented in this paper forms a basis of a new type of fiber devices with potential applications in fiber sensing, optical fiber communications, and optical signal processing.
文摘A fiber-optic confocal microscope has been analyzed by Fourier optics.It is found that the detected light intensity has three parts,each of which is depennted on the coupled lens,the detective lens,and the part comprised of the fiber and the microprobe.The simulated results show that the less the value of the parameter A is,which is dependent on the fiber and microprobe,the higher the axial resolution of the system is. For the case,as A→∞, the axial resolution is zero,which is corresponding to the conventional microscope.as A≤1,the axial resolution changes slightly,and is close to the optimal value,which is corresponding to the perfect confocal microscope.when the reflective loss takes place at the end of fiber,the contrast of axial intensity will decrease.All that will help the design of endoscope with confocal microscope at cellular level.