期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Research on simultaneous localization and mapping for AUV by an improved method:Variance reduction FastSLAM with simulated annealing 被引量:5
1
作者 Jiashan Cui Dongzhu Feng +1 位作者 Yunhui Li Qichen Tian 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期651-661,共11页
At present,simultaneous localization and mapping(SLAM) for an autonomous underwater vehicle(AUV)is a research hotspot.Aiming at the problem of non-linear model and non-Gaussian noise in AUV motion,an improved method o... At present,simultaneous localization and mapping(SLAM) for an autonomous underwater vehicle(AUV)is a research hotspot.Aiming at the problem of non-linear model and non-Gaussian noise in AUV motion,an improved method of variance reduction fast simultaneous localization and mapping(FastSLAM) with simulated annealing is proposed to solve the problems of particle degradation,particle depletion and particle loss in traditional FastSLAM,which lead to the reduction of AUV location estimation accuracy.The adaptive exponential fading factor is generated by the anneal function of simulated annealing algorithm to improve the effective particle number and replace resampling.By increasing the weight of small particles and decreasing the weight of large particles,the variance of particle weight can be reduced,the number of effective particles can be increased,and the accuracy of AUV location and feature location estimation can be improved to some extent by retaining more information carried by particles.The experimental results based on trial data show that the proposed simulated annealing variance reduction FastSLAM method avoids particle degradation,maintains the diversity of particles,weakened the degeneracy and improves the accuracy and stability of AUV navigation and localization system. 展开更多
关键词 Autonomous underwater vehicle(AUV) SONAR simultaneous localization and mapping(SLAM) Simulated annealing FASTSLAM
在线阅读 下载PDF
Approach of simultaneous localization and mapping based on local maps for robot 被引量:6
2
作者 陈白帆 蔡自兴 胡德文 《Journal of Central South University of Technology》 EI 2006年第6期713-716,共4页
An extended Kalman filter approach of simultaneous localization and mapping(SLAM) was proposed based on local maps. A local frame of reference was established periodically at the position of the robot, and then the ob... An extended Kalman filter approach of simultaneous localization and mapping(SLAM) was proposed based on local maps. A local frame of reference was established periodically at the position of the robot, and then the observations of the robot and landmarks were fused into the global frame of reference. Because of the independence of the local map, the approach does not cumulate the estimate and calculation errors which are produced by SLAM using Kalman filter directly. At the same time, it reduces the computational complexity. This method is proven correct and feasible in simulation experiments. 展开更多
关键词 simultaneous localization and mapping extended Kalman filter local map
在线阅读 下载PDF
Immune evolutionary algorithms with domain knowledge for simultaneous localization and mapping 被引量:4
3
作者 李枚毅 蔡自兴 《Journal of Central South University of Technology》 EI 2006年第5期529-535,共7页
Immune evolutionary algorithms with domain knowledge were presented to solve the problem of simultaneous localization and mapping for a mobile robot in unknown environments. Two operators with domain knowledge were de... Immune evolutionary algorithms with domain knowledge were presented to solve the problem of simultaneous localization and mapping for a mobile robot in unknown environments. Two operators with domain knowledge were designed in algorithms, where the feature of parallel line segments without the problem of data association was used to construct a vaccination operator, and the characters of convex vertices in polygonal obstacle were extended to develop a pulling operator of key point grid. The experimental results of a real mobile robot show that the computational expensiveness of algorithms designed is less than other evolutionary algorithms for simultaneous localization and mapping and the maps obtained are very accurate. Because immune evolutionary algorithms with domain knowledge have some advantages, the convergence rate of designed algorithms is about 44% higher than those of other algorithms. 展开更多
关键词 immune evolutionary algorithms simultaneous localization and mapping domain knowledge
在线阅读 下载PDF
Robot SLAM with Ad hoc wireless network adapted to search and rescue environments 被引量:4
4
作者 WANG Hong-ling ZHANG Cheng-jin +1 位作者 SONG Yong PANG Bao 《Journal of Central South University》 SCIE EI CAS CSCD 2018年第12期3033-3051,共19页
An innovative multi-robot simultaneous localization and mapping(SLAM)is proposed based on a mobile Ad hoc local wireless sensor network(Ad-WSN).Multiple followed-robots equipped with the wireless link RS232/485module ... An innovative multi-robot simultaneous localization and mapping(SLAM)is proposed based on a mobile Ad hoc local wireless sensor network(Ad-WSN).Multiple followed-robots equipped with the wireless link RS232/485module act as mobile nodes,with various on-board sensors,Tp-link wireless local area network cards,and Tp-link wireless routers.The master robot with embedded industrial PC and a complete robot control system autonomously performs the SLAM task by exchanging information with multiple followed-robots by using this self-organizing mobile wireless network.The PC on the remote console can monitor multi-robot SLAM on-site and provide direct motion control of the robots.This mobile Ad-WSN complements an environment devoid of usual GPS signals for the robots performing SLAM task in search and rescue environments.In post-disaster areas,the network is usually absent or variable and the site scene is cluttered with obstacles.To adapt to such harsh situations,the proposed self-organizing mobile Ad-WSN enables robots to complete the SLAM process while improving the performances of object of interest identification and exploration area coverage.The information of localization and mapping can communicate freely among multiple robots and remote PC control center via this mobile Ad-WSN.Therefore,the autonomous master robot runs SLAM algorithms while exchanging information with multiple followed-robots and with the remote PC control center via this local WSN environment.Simulations and experiments validate the improved performances of the exploration area coverage,object marked,and loop closure,which are adapted to search and rescue post-disaster cluttered environments. 展开更多
关键词 search and rescue environments local Ad-WSN robot simultaneous localization and mapping distributed particle filter algorithms coverage area exploration
在线阅读 下载PDF
A novel algorithm for SLAM in dynamic environments using landscape theory of aggregation 被引量:1
5
作者 华承昊 窦丽华 +1 位作者 方浩 付浩 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第10期2587-2594,共8页
To tackle the problem of simultaneous localization and mapping(SLAM) in dynamic environments, a novel algorithm using landscape theory of aggregation is presented. By exploiting the coherent explanation how actors for... To tackle the problem of simultaneous localization and mapping(SLAM) in dynamic environments, a novel algorithm using landscape theory of aggregation is presented. By exploiting the coherent explanation how actors form alignments in a game provided by the landscape theory of aggregation, the algorithm is able to explicitly deal with the ever-changing relationship between the static objects and the moving objects without any prior models of the moving objects. The effectiveness of the method has been validated by experiments in two representative dynamic environments: the campus road and the urban road. 展开更多
关键词 mobile robot simultaneous localization and mapping(SLAM) dynamic environment landscape theory of aggregation iterative closest point
在线阅读 下载PDF
Visual attention and clustering-based automatic selection of landmarks using single camera 被引量:1
6
作者 CHUHO Yi YONGMIN Shin JUNGWON Cho 《Journal of Central South University》 SCIE EI CAS 2014年第9期3525-3533,共9页
An improved method with better selection capability using a single camera was presented in comparison with previous method. To improve performance, two methods were applied to landmark selection in an unfamiliar indoo... An improved method with better selection capability using a single camera was presented in comparison with previous method. To improve performance, two methods were applied to landmark selection in an unfamiliar indoor environment. First, a modified visual attention method was proposed to automatically select a candidate region as a more useful landmark. In visual attention, candidate landmark regions were selected with different characteristics of ambient color and intensity in the image. Then, the more useful landmarks were selected by combining the candidate regions using clustering. As generally implemented, automatic landmark selection by vision-based simultaneous localization and mapping(SLAM) results in many useless landmarks, because the features of images are distinguished from the surrounding environment but detected repeatedly. These useless landmarks create a serious problem for the SLAM system because they complicate data association. To address this, a method was proposed in which the robot initially collected landmarks through automatic detection while traversing the entire area where the robot performed SLAM, and then, the robot selected only those landmarks that exhibited high rarity through clustering, which enhanced the system performance. Experimental results show that this method of automatic landmark selection results in selection of a high-rarity landmark. The average error of the performance of SLAM decreases 52% compared with conventional methods and the accuracy of data associations increases. 展开更多
关键词 simultaneous localization and mapping automatic landmark selection visual attention CLUSTERING
在线阅读 下载PDF
A novel robust approach for SLAM of mobile robot
7
作者 马家辰 张琦 马立勇 《Journal of Central South University》 SCIE EI CAS 2014年第6期2208-2215,共8页
The task of simultaneous localization and mapping (SLAM) is to build environmental map and locate the position of mobile robot at the same time. FastSLAM 2.0 is one of powerful techniques to solve the SLAM problem. ... The task of simultaneous localization and mapping (SLAM) is to build environmental map and locate the position of mobile robot at the same time. FastSLAM 2.0 is one of powerful techniques to solve the SLAM problem. However, there are two obvious limitations in FastSLAM 2.0, one is the linear approximations of nonlinear functions which would cause the filter inconsistent and the other is the "particle depletion" phenomenon. A kind of PSO & Hjj-based FastSLAM 2.0 algorithm is proposed. For maintaining the estimation accuracy, H~ filter is used instead of EKF for overcoming the inaccuracy caused by the linear approximations of nonlinear functions. The unreasonable proposal distribution of particle greatly influences the pose state estimation of robot. A new sampling strategy based on PSO (particle swarm optimization) is presented to solve the "particle depletion" phenomenon and improve the accuracy of pose state estimation. The proposed approach overcomes the obvious drawbacks of standard FastSLAM 2.0 algorithm and enhances the robustness and efficiency in the parts of consistency of filter and accuracy of state estimation in SLAM. Simulation results demonstrate the superiority of the proposed approach. 展开更多
关键词 mobile robot simultaneous localization and mapping (SLAM) improved FastSLAM 2.0 H∞ filter particle swarmoptimization (PSO)
在线阅读 下载PDF
A unified approach of observability analysis for airborne SLAM
8
作者 方强 黄新生 《Journal of Central South University》 SCIE EI CAS 2013年第9期2432-2439,共8页
An unmanned aerial vehicle (UAV) is arranged to explore an unknown environment and to map the features it finds when GPS is denied.It navigates using a statistical estimation technique known as simultaneous localiza... An unmanned aerial vehicle (UAV) is arranged to explore an unknown environment and to map the features it finds when GPS is denied.It navigates using a statistical estimation technique known as simultaneous localization and mapping (SLAM) which allows for the simultaneous estimation of the location of the UAV as well as the location of the features it sees.Obscrvability is a key aspect of the state estimation problem of SLAM.However,the dimension and variables of SLAM system might be changed with new features.To solve this issue,a unified approach of observability analysis for SLAM system is provided,through reorganizing the system model.The dimension and variables of SLAM system keep steady,then the PWCS theory can be used to analyze the local or total observability,and under special maneuver,some system states,such as the yaw angle,become observable.Simulation results validate the proposed method. 展开更多
关键词 unmanned aerial vehicle (UAV) simultaneous localization and mapping (SLAM) inertial navigation system (INS) OBSERVABILITY extend Kalman filter (EKF)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部