In the realm of high-speed railway bridge engineering,managing the intricacies of the track-bridge system model(TBSM)during seismic events remains a formidable challenge.This study pioneers an innovative approach by p...In the realm of high-speed railway bridge engineering,managing the intricacies of the track-bridge system model(TBSM)during seismic events remains a formidable challenge.This study pioneers an innovative approach by presenting a simplified bridge model(SBM)optimized for both computational efficiency and precise representation,a seminal contribution to the engineering design landscape.Central to this innovation is a novel model-updating methodology that synergistically melds artificial neural networks with an augmented particle swarm optimization.The neural networks adeptly map update parameters to seismic responses,while enhancements to the particle swarm algorithm’s inertial and learning weights lead to superior SBM parameter updates.Verification via a 4-span high-speed railway bridge revealed that the optimized SBM and TBSM exhibit a highly consistent structural natural period and seismic response,with errors controlled within 7%.Additionally,the computational efficiency improved by over 100%.Leveraging the peak displacement and shear force residuals from the seismic TBSM and SBM as optimization objectives,SBM parameters are adeptly revised.Furthermore,the incorporation of elastoplastic springs at the beam ends of the simplified model effectively captures the additional mass,stiffness,and constraint effects exerted by the track system on the bridge structure.展开更多
针对无线通信系统中记忆非线性功率放大器预失真结构不足和精度不高等问题,提出了一种基于模糊神经网络模型识别的双环学习结构自适应预失真方法。该方法以实数延时模糊神经网络模型为基础,采用改进的简化粒子群优化(Simplified Particl...针对无线通信系统中记忆非线性功率放大器预失真结构不足和精度不高等问题,提出了一种基于模糊神经网络模型识别的双环学习结构自适应预失真方法。该方法以实数延时模糊神经网络模型为基础,采用改进的简化粒子群优化(Simplified Particle Swarm Optimization,SPSO)算法进行间接学习结构离线训练模糊神经网络来确定模型参数,作为预失真器的初值,再利用最小均方(Least Mean Square,LMS)算法进行直接学习结构在线微调整预失真器参数,拟合功放的非线性和记忆效应。该方法结构简单,收敛速度快且精度高,避免了局部最优。实验结果表明,该方案邻信道功率比经典的双环结构预失真方法约改善7 d B,功放的线性化性能明显提高,由此验证了其可行性。展开更多
基金Project(2022YFC3004304)supported by the National Key Research and Development Program of ChinaProjects(52078487,U1934207,52178180)supported by the National Natural Science Foundation of China+2 种基金Project(2022TJ-Y10)supported by the Hunan Province Science and Technology Talent Lifting Project,ChinaProject(2023QYJC006)supported by the Frontier Cross Research Project of Central South University,ChinaProject(SKL-IoTSC(UM)-2024-2026/ORP/GA08/2023)supported by the Science and Technology Development Fund and the State Key Laboratory of Internet of Things for Smart City(University of Macao),China。
文摘In the realm of high-speed railway bridge engineering,managing the intricacies of the track-bridge system model(TBSM)during seismic events remains a formidable challenge.This study pioneers an innovative approach by presenting a simplified bridge model(SBM)optimized for both computational efficiency and precise representation,a seminal contribution to the engineering design landscape.Central to this innovation is a novel model-updating methodology that synergistically melds artificial neural networks with an augmented particle swarm optimization.The neural networks adeptly map update parameters to seismic responses,while enhancements to the particle swarm algorithm’s inertial and learning weights lead to superior SBM parameter updates.Verification via a 4-span high-speed railway bridge revealed that the optimized SBM and TBSM exhibit a highly consistent structural natural period and seismic response,with errors controlled within 7%.Additionally,the computational efficiency improved by over 100%.Leveraging the peak displacement and shear force residuals from the seismic TBSM and SBM as optimization objectives,SBM parameters are adeptly revised.Furthermore,the incorporation of elastoplastic springs at the beam ends of the simplified model effectively captures the additional mass,stiffness,and constraint effects exerted by the track system on the bridge structure.
文摘针对无线通信系统中记忆非线性功率放大器预失真结构不足和精度不高等问题,提出了一种基于模糊神经网络模型识别的双环学习结构自适应预失真方法。该方法以实数延时模糊神经网络模型为基础,采用改进的简化粒子群优化(Simplified Particle Swarm Optimization,SPSO)算法进行间接学习结构离线训练模糊神经网络来确定模型参数,作为预失真器的初值,再利用最小均方(Least Mean Square,LMS)算法进行直接学习结构在线微调整预失真器参数,拟合功放的非线性和记忆效应。该方法结构简单,收敛速度快且精度高,避免了局部最优。实验结果表明,该方案邻信道功率比经典的双环结构预失真方法约改善7 d B,功放的线性化性能明显提高,由此验证了其可行性。