In the process of power scaling large-area Quantum Cascade Lasers(QCLs),challenges such as degradation of beam quality and emission of multilobed far-field modes are frequently encountered.These issues become particul...In the process of power scaling large-area Quantum Cascade Lasers(QCLs),challenges such as degradation of beam quality and emission of multilobed far-field modes are frequently encountered.These issues become particularly pronounced with an increase in ridge width,resulting in multimode problems.To tackle this,an innovative multi ridge waveguide structure based on the principle of supersymmetry(SUSY)was proposed.This structure comprises a wider main waveguide in the center and two narrower auxiliary waveguides on either side.The high-order modes of the main waveguide are coupled with the modes of the auxiliary waveguides through mode-matching design,and the optical loss of the auxiliary waveguides suppresses these modes,thereby achieving fundamental mode lasing of the wider main waveguide.This paper employs the finite difference eigenmode(FDE)method to perform detailed structural modeling and simulation optimization of the 4.6μm wavelength quantum cascade laser,successfully achieving a single transverse mode QCL with a ridge width of 10μm.In comparison to the traditional single-mode QCL(with a ridge width of about 5μm),the MRW structure has the potential to increase the gain area of the laser by 100%.This offers a novel design concept and methodology for enhancing the single-mode luminous power of mid-infrared quantum cascade lasers,which is of considerable significance.展开更多
A millimeter-wave (mmW) broadband dual circularly polarized (dual-CP) antenna with high port isolation is proposed in this paper. The dual-CP performance is realized based on the symmetrical septum circular polarizer ...A millimeter-wave (mmW) broadband dual circularly polarized (dual-CP) antenna with high port isolation is proposed in this paper. The dual-CP performance is realized based on the symmetrical septum circular polarizer based on the gap waveguide (GWG) technology. Two sets of symmetrical septum circular polarizers are used for common aperture combination,achieving the broadband dual-CP characteristics. Taking advantage of GWG structure without good electrical contact, the antenna can also be fabricated and assembled easily in the mmW band. The principle analysis of the antenna is given, and the antenna is simulated and fabricated. The measured results show that the bandwidth for S11lower than-10.7 dB and the axial ratio (AR) lower than 2.90 dB in 75-110 GHz, with realative bandwidth of 38%. Over the frequency band, the gain is higher than 9.16 dBic, and the dual-CP port isolation is greater than32 dB. The proposed antenna with dual-CP and highly isolated in a wide bandwidth range has broad application prospects in the field of mmW communication.展开更多
In the realm of near-infrared spectroscopy,the detection of molecules has been achieved using on-chip waveguides and resonators.In the mid-infrared band,the integration and sensitivity of chemical sensing chips are of...In the realm of near-infrared spectroscopy,the detection of molecules has been achieved using on-chip waveguides and resonators.In the mid-infrared band,the integration and sensitivity of chemical sensing chips are often constrained by the reliance on off-chip light sources and detectors.In this study,we demonstrate an InAs/GaAsSb superlattice mid-infrared waveguide integrated detector.The GaAsSb waveguide layer and the InAs/GaAsSb superlattice absorbing layer are connected through evanescent coupling,facilitating efficient and highquality detection of mid-infrared light with minimal loss.We conducted a simulation to analyze the photoelectric characteristics of the device.Additionally,we investigated the factors that affect the integration of the InAs/GaAs⁃Sb superlattice photodetector and the GaAsSb waveguide.Optimal thicknesses and lengths for the absorption lay⁃er are determined.When the absorption layer has a thickness of 0.3μm and a length of 50μm,the noise equiva⁃lent power reaches its minimum value,and the quantum efficiency can achieve a value of 68.9%.The utilization of waveguide detectors constructed with Ⅲ-Ⅴ materials offers a more convenient means of integrating mid-infra⁃red light sources and achieving photoelectric detection chips.展开更多
The cutoff wavenumbers of elliptical waveguides were calculated by using isogeomtric analysis method (IGA). With NURBS basis functions in IGA, the computational model was consistent with geometric model imported fro...The cutoff wavenumbers of elliptical waveguides were calculated by using isogeomtric analysis method (IGA). With NURBS basis functions in IGA, the computational model was consistent with geometric model imported from CAD system. The field variable (longitudinal electric/magnetic field) was constructed by the same NURBS basis functions as the representation of geometric model. In the refinement procedure used to get a more accurate solution, communication with original CAD system is unnecessary and the geometric shape is kept unchanged. The Helrnholtz equation is weakened to a set of general eigenvalue equation by virtual work principal with diseretized degree-of-freedom on control points. Elliptical waveguides with three typical eccentricities, 0.1, 0.5 and 0.9, are calculated by IGA with different size mesh. The first four cutoff wavenumbers are obtained even in coarse mesh and the RMS of first 25 cutoff wavenumbers has much more swift convergence rate with decreasing the mesh size than traditional FEM. The accuracy and robustness of the proposed method are validated by elliptical waveguides, and also the method can be applied to waveguides with arbitrary cross sections.展开更多
The alignment coupling between optical waveguide chips and optical fiber arrays is the basis of the alignment coupling of planar optical waveguide devices, and the precise position detection with angle and spacing adj...The alignment coupling between optical waveguide chips and optical fiber arrays is the basis of the alignment coupling of planar optical waveguide devices, and the precise position detection with angle and spacing adjustments is one of the key steps of alignment coupling. A methodology for position detection, and angle and spacing adjustment was proposed for optical waveguide chips and optical fiber arrays based on machine vision. The experimental results show angle detection precision levels higher than 0.05°, line detection precision levels higher than 0.1 μm, and detection time less than 2 s. Therefore, the system developed herein meets the precise requirements necessary for position detection, and angle and spacing adjustments for optical waveguide chips and optical fiber arrays.展开更多
Plasmon induced transparency(PIT)in the transparent window provides new insights into the design of optical filters,switches and storage,and integrated optics.The slow light effect makes PIT applicable to both sensors...Plasmon induced transparency(PIT)in the transparent window provides new insights into the design of optical filters,switches and storage,and integrated optics.The slow light effect makes PIT applicable to both sensors and slow light devices.Besides,PIT can overcome the diffraction limit of light,which makes it possible to manipulate light on a half-wavelength scale and brings good news to the miniaturization of optical devices.In this paper,we first summarize the researches of PIT phenomenon based on metal-dielectric-metal(MDM)waveguide systems and analyze the physical mechanisms of PIT including bright-dark mode interactions and phase-coupling-induced transparency.Then,we review the applications of PIT in optical sensing,optical filtering,optical switching,slow light devices and optical logic devices.At last,we outline important challenges that need to be addressed,provide corresponding solutions and predict important directions for future research in this area.展开更多
To get the scattering loss of the trapezoidal core waveguide,a new analysis model is presented based on the perturbation equivalent method and modified effective-index method.Firstly,the trapezoidal core waveguide is ...To get the scattering loss of the trapezoidal core waveguide,a new analysis model is presented based on the perturbation equivalent method and modified effective-index method.Firstly,the trapezoidal core waveguide is successfully equivalent to the rectangular one with both restricting the same optical field energy by adopting the perturbation method,Then,the equivalent rectangular core waveguide is decomposed into two slab waveguides by employing the modified effective-index method,The trapezoidal core waveguide scattering theory model is established based on the slab waveguide scattering theory.With the sidewalls surface roughness in the range from 0 to 100 nm in the single model trapezodial core waveguide,optical simulation shows excellent agreement with the results from the scattering loss model presented.The relationship between the dimension and side-wall roughness with the scattering loss can be determined in the trapezoidal core waveguide by the scattering loss model.展开更多
In order to improve ability of amplification about optical arrival angle in laser eavesdropping system, and enhance receiving field of view (FOV) of laser eavesdropping system, this paper presents a new multistage amp...In order to improve ability of amplification about optical arrival angle in laser eavesdropping system, and enhance receiving field of view (FOV) of laser eavesdropping system, this paper presents a new multistage amplifier laser eavesdropping model based on waveguide fiber taper. First of all, taking about four-quadrant (4QD) laser eavesdropping model as an example, from the theoretical view, analyses factors that, currently, laser eavesdropping system face many restrictive factors during practical applications. Besides, from the receiving FOV and ability of amplification about arrival angle of incoming optical axis angles, systematically analyses advantages of multi-stage amplifier model. What’s more,through constructing laser eavesdropping test platform, we demonstrate Signal to Noise Ratio(SNR) of two stage amplification model is eventually promoted to 6-10 dB compared with one amplifying model,especially in low and high audio level, the advantages is more obvious.展开更多
The sea-trial results indicate that the stable interference structure can be observed in low-frequency continuous spectra sound field.And the equation of the interference striation have been derived in light of the co...The sea-trial results indicate that the stable interference structure can be observed in low-frequency continuous spectra sound field.And the equation of the interference striation have been derived in light of the comcept of waveguide invariant, indicating that the striations are a family of quasi hyperbolas. The heading angle φ, waveguide invariant β and r0/v(r0 is the range of the closest point of approach and v is the navigating velocity of target) are estimated by using Hough transform for the image processing of the LOFARgram and bearing-time records. Four passive ranging algorithms based on double element or double array model are proposed. The simulation research shows that the first positioning algorithm should be adopted when the target heading angle is less than 10°; otherwise, the latter three algorithms are used to range, and the larger the heading angle is, the higher the positioning accuracy is. The relative ranging errors of the four methods are less than 10% under the simulation conditions used in this paper.展开更多
A new and upcoming application is the use of 60 GHz antennas for high date rate point-to-point connections to serve Gigabit(Gi-Fi)w ireless communications.The design of M illimeter w ave(M m W)antennas has to cope w i...A new and upcoming application is the use of 60 GHz antennas for high date rate point-to-point connections to serve Gigabit(Gi-Fi)w ireless communications.The design of M illimeter w ave(M m W)antennas has to cope w ith the unadorned influences of manufacturing tolerances and losses at 60 GHz.In this paper,the concept of Substrate Integrated Waveguide(SIW)and Exponentially Tapered Slot(ETS)antenna w ere used together to design a high gain,efficient planar dielectric loaded antenna for M m W Gi-Fi w ireless communications at 60 GHz.The SIW is used to feed the antenna and a dielectric is utilized in front of the antenna to increase the gain.The dielectric loaded ETS antenna and compact SIW feed w ere fabricated on a single substrate,resulting in low cost and easy fabrication.The antenna w ith elliptical shaped dielectric loaded w as fabricated using printed circuit board process.The measured gain of the single element antenna is 10.2 dB,w hile the radiation efficiency of 96.84%is obtained at 60 GHz.The Y-junction SIW pow er divider is used to form a 1×4 array structure.M easured gain of the 1×4 array antenna is 13.3 dB,w hile the measured radiation pattern and gain are almost constant w ithin the w ide bandw idth of the antenna.展开更多
The effect of longitudinal-offset radiating slots on a centered-inclined feeding slot in the common broad wall of the two crossed rectangular waveguides is analysed quantitatively. The corresponding equivalent paramet...The effect of longitudinal-offset radiating slots on a centered-inclined feeding slot in the common broad wall of the two crossed rectangular waveguides is analysed quantitatively. The corresponding equivalent parameters are computed by employing the moment method. The numerical results of resonant length of the feeding slot, VSWR and coupling parameter are showed and compared with the case of no radiating slots and short-end. The agreement between theory and experiment is good.展开更多
The exact and approximate expressions for the field components of the TE modes in a sectoral waveguide are presented. Using the equivalence principle, the electric field distribution on the aperture surfaces of a narr...The exact and approximate expressions for the field components of the TE modes in a sectoral waveguide are presented. Using the equivalence principle, the electric field distribution on the aperture surfaces of a narrow transverse slot cut in the curved broad wall of a sectoral waveguide is solved by the moment method (Galerkin's method). lmportant results such as the scattering parameter, the normalized equivalent series impedance, the resonant resistance and resonant length are studied.展开更多
The behavior of a RF-excited waveguide CO2 laser in the pulse regime is studied theoretically. The output pulse evolution is studied by applying three types of pulses namely the square, sine and the triangular ones as...The behavior of a RF-excited waveguide CO2 laser in the pulse regime is studied theoretically. The output pulse evolution is studied by applying three types of pulses namely the square, sine and the triangular ones as the excitation pulses. The frequency dependence behavior of the output pulse is also presented.展开更多
Fabrication and characterization of electro-optic modulators based on the novel organic electro-optic materials composed of self-assembled superlattices (SAS) were presented, both wet-dipping self-assembly and vapor p...Fabrication and characterization of electro-optic modulators based on the novel organic electro-optic materials composed of self-assembled superlattices (SAS) were presented, both wet-dipping self-assembly and vapor phase deposition approaches were discussed. Prototype waveguide electro-optic modulators were fabricated using SAS films integrated with low-loss polymeric materials functioning as partial guiding and cladding layers.Promising electro-optic thin film materials including DTPT and PEPCOOH grown from the vapor phase were used for fabrication and test of electro-optic prototype modulators. Finally,the EO coefficient of tens of pm/V was obtained,which can sufficiently support high-speed and small size EO modulators.展开更多
In the underwater waveguide,the conventional adaptive subspace detector(ASD),derived by using the generalized likelihood ratio test(GLRT)theory,suffers from a significant degradation in detection performance when the ...In the underwater waveguide,the conventional adaptive subspace detector(ASD),derived by using the generalized likelihood ratio test(GLRT)theory,suffers from a significant degradation in detection performance when the samplings of training data are deficient.This paper proposes a dimension-reduced approach to alleviate this problem.The dimension reduction includes two steps:firstly,the full array is divided into several subarrays;secondly,the test data and the training data at each subarray are transformed into the modal domain from the hydrophone domain.Then the modal-domain test data and training data at each subarray are processed to formulate the subarray statistic by using the GLRT theory.The final test statistic of the dimension-reduced ASD(DR-ASD)is obtained by summing all the subarray statistics.After the dimension reduction,the unknown parameters can be estimated more accurately so the DR-ASD achieves a better detection performance than the ASD.In order to achieve the optimal detection performance,the processing gain of the DR-ASD is deduced to choose a proper number of subarrays.Simulation experiments verify the improved detection performance of the DR-ASD compared with the ASD.展开更多
Electron beam lithography(EBL) is a key technology in the fabrication of nanoscale silicon optical waveguide. The influence of exposure dose, the main process parameter of EBL, on the structure profile of poly-methyl ...Electron beam lithography(EBL) is a key technology in the fabrication of nanoscale silicon optical waveguide. The influence of exposure dose, the main process parameter of EBL, on the structure profile of poly-methyl methacrylate(PMMA) after development was studied using a silicon on insulator(SOI) wafer with 220 nm top silicon as the substrate. The relationship between exposure dose and structure pattern width after development was analyzed according to the measurement results. The optimum exposure dose of 220 μC/cm^(2) was found to obtain a final structure consistent with the designed mask value through subsequent processes. At the same time, according to the image segmentation curve tracking technology, the contour extraction process of the dose test results was carried out, and the relationship among mask design value, exposure dose and two-dimensional roughness of boundary contour was analyzed, which can provide reference for the subsequent electron beam lithography of the same substrate material.展开更多
A cross-linkable fluorinated poly (ether ether ketone) (FPEEK) was synthesized for the fabrication of arrayed waveguide grating (AWG) multiplexer. The results of thermal gravimetric analysis (TGA) and near-infrared ab...A cross-linkable fluorinated poly (ether ether ketone) (FPEEK) was synthesized for the fabrication of arrayed waveguide grating (AWG) multiplexer. The results of thermal gravimetric analysis (TGA) and near-infrared absorption spectrum show that the materials have high thermal stability and high optical transparency in the infrared communication region. The refractive index of FPEEK can be controlled easily by changing the fluorine content of the materials. The 32-channel AWG multiplexer is fabricated using the FPEEK and oxygen reactive ion etching technology. The AWG multiplexer exhibits that the insertion loss is from 12.8 to 17.8 dB and the channel crosstalk is less than-20 dB. The wavelength channel spacing and the center wavelength are 0.8nm and 1548nm, respectively.展开更多
An optical code generating device for security access system application is presented. The code generating device constructed using asymmetric hollow optical waveguide coupler design provides a unique series of output...An optical code generating device for security access system application is presented. The code generating device constructed using asymmetric hollow optical waveguide coupler design provides a unique series of output light intensities which are successively used as an optical code. The design of the waveguide is made using two major components which are asymmetric Y-junction splitter and a linear taper. Waveguiding is done using a hollow waveguide structure. Construction of higher level 1×N hollow waveguide coupler is done utilizing a basic 1×2 asymmetric waveguide coupler design together with a cascaded design scheme. Non-sequential ray tracing of the asymmetric hollow optical waveguide couplers is performed to predict the optical transmission properties of the waveguide. A representation of the code combination that can be generated from the device is obtained using combinatory number theory.展开更多
基金Supported by the National Natural Science Foundation of China(62105039)。
文摘In the process of power scaling large-area Quantum Cascade Lasers(QCLs),challenges such as degradation of beam quality and emission of multilobed far-field modes are frequently encountered.These issues become particularly pronounced with an increase in ridge width,resulting in multimode problems.To tackle this,an innovative multi ridge waveguide structure based on the principle of supersymmetry(SUSY)was proposed.This structure comprises a wider main waveguide in the center and two narrower auxiliary waveguides on either side.The high-order modes of the main waveguide are coupled with the modes of the auxiliary waveguides through mode-matching design,and the optical loss of the auxiliary waveguides suppresses these modes,thereby achieving fundamental mode lasing of the wider main waveguide.This paper employs the finite difference eigenmode(FDE)method to perform detailed structural modeling and simulation optimization of the 4.6μm wavelength quantum cascade laser,successfully achieving a single transverse mode QCL with a ridge width of 10μm.In comparison to the traditional single-mode QCL(with a ridge width of about 5μm),the MRW structure has the potential to increase the gain area of the laser by 100%.This offers a novel design concept and methodology for enhancing the single-mode luminous power of mid-infrared quantum cascade lasers,which is of considerable significance.
文摘A millimeter-wave (mmW) broadband dual circularly polarized (dual-CP) antenna with high port isolation is proposed in this paper. The dual-CP performance is realized based on the symmetrical septum circular polarizer based on the gap waveguide (GWG) technology. Two sets of symmetrical septum circular polarizers are used for common aperture combination,achieving the broadband dual-CP characteristics. Taking advantage of GWG structure without good electrical contact, the antenna can also be fabricated and assembled easily in the mmW band. The principle analysis of the antenna is given, and the antenna is simulated and fabricated. The measured results show that the bandwidth for S11lower than-10.7 dB and the axial ratio (AR) lower than 2.90 dB in 75-110 GHz, with realative bandwidth of 38%. Over the frequency band, the gain is higher than 9.16 dBic, and the dual-CP port isolation is greater than32 dB. The proposed antenna with dual-CP and highly isolated in a wide bandwidth range has broad application prospects in the field of mmW communication.
基金Supported by the National Natural Science Foundation of China(NSFC)(61904183,61974152,62104237,62004205)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Y202057)+1 种基金Shanghai Science and Technology Committee Rising-Star Program(20QA1410500)Shanghai Sail Plans(21YF1455000)。
文摘In the realm of near-infrared spectroscopy,the detection of molecules has been achieved using on-chip waveguides and resonators.In the mid-infrared band,the integration and sensitivity of chemical sensing chips are often constrained by the reliance on off-chip light sources and detectors.In this study,we demonstrate an InAs/GaAsSb superlattice mid-infrared waveguide integrated detector.The GaAsSb waveguide layer and the InAs/GaAsSb superlattice absorbing layer are connected through evanescent coupling,facilitating efficient and highquality detection of mid-infrared light with minimal loss.We conducted a simulation to analyze the photoelectric characteristics of the device.Additionally,we investigated the factors that affect the integration of the InAs/GaAs⁃Sb superlattice photodetector and the GaAsSb waveguide.Optimal thicknesses and lengths for the absorption lay⁃er are determined.When the absorption layer has a thickness of 0.3μm and a length of 50μm,the noise equiva⁃lent power reaches its minimum value,and the quantum efficiency can achieve a value of 68.9%.The utilization of waveguide detectors constructed with Ⅲ-Ⅴ materials offers a more convenient means of integrating mid-infra⁃red light sources and achieving photoelectric detection chips.
基金Project(GZ566) supported by the China-German Joint Research FoundationProjects(51138011, 51109134) supported by the National Natural Science Foundation of China
文摘The cutoff wavenumbers of elliptical waveguides were calculated by using isogeomtric analysis method (IGA). With NURBS basis functions in IGA, the computational model was consistent with geometric model imported from CAD system. The field variable (longitudinal electric/magnetic field) was constructed by the same NURBS basis functions as the representation of geometric model. In the refinement procedure used to get a more accurate solution, communication with original CAD system is unnecessary and the geometric shape is kept unchanged. The Helrnholtz equation is weakened to a set of general eigenvalue equation by virtual work principal with diseretized degree-of-freedom on control points. Elliptical waveguides with three typical eccentricities, 0.1, 0.5 and 0.9, are calculated by IGA with different size mesh. The first four cutoff wavenumbers are obtained even in coarse mesh and the RMS of first 25 cutoff wavenumbers has much more swift convergence rate with decreasing the mesh size than traditional FEM. The accuracy and robustness of the proposed method are validated by elliptical waveguides, and also the method can be applied to waveguides with arbitrary cross sections.
基金Projects(51475479,51075402)supported by the National Natural Science Foundation of ChinaProject(2012AA040406)supported by the National High Technology Research and Development Program of China+2 种基金Project(20110162130004)supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProject(14JJ2010)supported by the Natural Science Foundation of Hunan Province,ChinaProject(GZKF-201401)supported by the Open Project of Stage Key Laboratory of Fluid Power Transmission and Control(Zhejiang University),China
文摘The alignment coupling between optical waveguide chips and optical fiber arrays is the basis of the alignment coupling of planar optical waveguide devices, and the precise position detection with angle and spacing adjustments is one of the key steps of alignment coupling. A methodology for position detection, and angle and spacing adjustment was proposed for optical waveguide chips and optical fiber arrays based on machine vision. The experimental results show angle detection precision levels higher than 0.05°, line detection precision levels higher than 0.1 μm, and detection time less than 2 s. Therefore, the system developed herein meets the precise requirements necessary for position detection, and angle and spacing adjustments for optical waveguide chips and optical fiber arrays.
基金Project(2018JJ4086)supported by the Natural Science Foundation of Hunan Province,ChinaProject(520)supported by the Training and Innovation Base for Graduate of Education Department of Hunan Province,China+1 种基金Project(201802368048)supported by Industry-University Cooperation and Education Project of National Education Department,ChinaProject(CSUZC201925)supported by the Open Sharing Fund for the Large-scale Instruments and Equipments of Central South University,China。
文摘Plasmon induced transparency(PIT)in the transparent window provides new insights into the design of optical filters,switches and storage,and integrated optics.The slow light effect makes PIT applicable to both sensors and slow light devices.Besides,PIT can overcome the diffraction limit of light,which makes it possible to manipulate light on a half-wavelength scale and brings good news to the miniaturization of optical devices.In this paper,we first summarize the researches of PIT phenomenon based on metal-dielectric-metal(MDM)waveguide systems and analyze the physical mechanisms of PIT including bright-dark mode interactions and phase-coupling-induced transparency.Then,we review the applications of PIT in optical sensing,optical filtering,optical switching,slow light devices and optical logic devices.At last,we outline important challenges that need to be addressed,provide corresponding solutions and predict important directions for future research in this area.
基金Project(50735007) supported by the National Natural Science Foundation of ChinaProject(2010ZX04001-151) supported by Important National Science & Technology Specific Program of China
文摘To get the scattering loss of the trapezoidal core waveguide,a new analysis model is presented based on the perturbation equivalent method and modified effective-index method.Firstly,the trapezoidal core waveguide is successfully equivalent to the rectangular one with both restricting the same optical field energy by adopting the perturbation method,Then,the equivalent rectangular core waveguide is decomposed into two slab waveguides by employing the modified effective-index method,The trapezoidal core waveguide scattering theory model is established based on the slab waveguide scattering theory.With the sidewalls surface roughness in the range from 0 to 100 nm in the single model trapezodial core waveguide,optical simulation shows excellent agreement with the results from the scattering loss model presented.The relationship between the dimension and side-wall roughness with the scattering loss can be determined in the trapezoidal core waveguide by the scattering loss model.
基金Jilin province of Science and technology development plan key scientific and technological breakthrough project.(20150204083GX,20150204049GX)The 13th five-year science and technology research project of Jilin education department.(Jilin Provincial Education and technology system 2016357)Jilin provincial science and technology smes innovation fund.(20170308029HJ)
文摘In order to improve ability of amplification about optical arrival angle in laser eavesdropping system, and enhance receiving field of view (FOV) of laser eavesdropping system, this paper presents a new multistage amplifier laser eavesdropping model based on waveguide fiber taper. First of all, taking about four-quadrant (4QD) laser eavesdropping model as an example, from the theoretical view, analyses factors that, currently, laser eavesdropping system face many restrictive factors during practical applications. Besides, from the receiving FOV and ability of amplification about arrival angle of incoming optical axis angles, systematically analyses advantages of multi-stage amplifier model. What’s more,through constructing laser eavesdropping test platform, we demonstrate Signal to Noise Ratio(SNR) of two stage amplification model is eventually promoted to 6-10 dB compared with one amplifying model,especially in low and high audio level, the advantages is more obvious.
基金Sponsored by the Science and Technology Foundation of State Key Laboratory of Underwater Acoustic Technology(9140C2001010801,9140C2002100802)the Foundation for Basic Research of Harbin Engineering University(HEUFT07072)
文摘The sea-trial results indicate that the stable interference structure can be observed in low-frequency continuous spectra sound field.And the equation of the interference striation have been derived in light of the comcept of waveguide invariant, indicating that the striations are a family of quasi hyperbolas. The heading angle φ, waveguide invariant β and r0/v(r0 is the range of the closest point of approach and v is the navigating velocity of target) are estimated by using Hough transform for the image processing of the LOFARgram and bearing-time records. Four passive ranging algorithms based on double element or double array model are proposed. The simulation research shows that the first positioning algorithm should be adopted when the target heading angle is less than 10°; otherwise, the latter three algorithms are used to range, and the larger the heading angle is, the higher the positioning accuracy is. The relative ranging errors of the four methods are less than 10% under the simulation conditions used in this paper.
基金the DRDO,Government of India for providing financial patronage in executing this research work
文摘A new and upcoming application is the use of 60 GHz antennas for high date rate point-to-point connections to serve Gigabit(Gi-Fi)w ireless communications.The design of M illimeter w ave(M m W)antennas has to cope w ith the unadorned influences of manufacturing tolerances and losses at 60 GHz.In this paper,the concept of Substrate Integrated Waveguide(SIW)and Exponentially Tapered Slot(ETS)antenna w ere used together to design a high gain,efficient planar dielectric loaded antenna for M m W Gi-Fi w ireless communications at 60 GHz.The SIW is used to feed the antenna and a dielectric is utilized in front of the antenna to increase the gain.The dielectric loaded ETS antenna and compact SIW feed w ere fabricated on a single substrate,resulting in low cost and easy fabrication.The antenna w ith elliptical shaped dielectric loaded w as fabricated using printed circuit board process.The measured gain of the single element antenna is 10.2 dB,w hile the radiation efficiency of 96.84%is obtained at 60 GHz.The Y-junction SIW pow er divider is used to form a 1×4 array structure.M easured gain of the 1×4 array antenna is 13.3 dB,w hile the measured radiation pattern and gain are almost constant w ithin the w ide bandw idth of the antenna.
文摘The effect of longitudinal-offset radiating slots on a centered-inclined feeding slot in the common broad wall of the two crossed rectangular waveguides is analysed quantitatively. The corresponding equivalent parameters are computed by employing the moment method. The numerical results of resonant length of the feeding slot, VSWR and coupling parameter are showed and compared with the case of no radiating slots and short-end. The agreement between theory and experiment is good.
文摘The exact and approximate expressions for the field components of the TE modes in a sectoral waveguide are presented. Using the equivalence principle, the electric field distribution on the aperture surfaces of a narrow transverse slot cut in the curved broad wall of a sectoral waveguide is solved by the moment method (Galerkin's method). lmportant results such as the scattering parameter, the normalized equivalent series impedance, the resonant resistance and resonant length are studied.
文摘The behavior of a RF-excited waveguide CO2 laser in the pulse regime is studied theoretically. The output pulse evolution is studied by applying three types of pulses namely the square, sine and the triangular ones as the excitation pulses. The frequency dependence behavior of the output pulse is also presented.
文摘Fabrication and characterization of electro-optic modulators based on the novel organic electro-optic materials composed of self-assembled superlattices (SAS) were presented, both wet-dipping self-assembly and vapor phase deposition approaches were discussed. Prototype waveguide electro-optic modulators were fabricated using SAS films integrated with low-loss polymeric materials functioning as partial guiding and cladding layers.Promising electro-optic thin film materials including DTPT and PEPCOOH grown from the vapor phase were used for fabrication and test of electro-optic prototype modulators. Finally,the EO coefficient of tens of pm/V was obtained,which can sufficiently support high-speed and small size EO modulators.
基金the National Natural Science Foundation of China (Grant No. 11534009, 11974285) to provide fund for conducting this research
文摘In the underwater waveguide,the conventional adaptive subspace detector(ASD),derived by using the generalized likelihood ratio test(GLRT)theory,suffers from a significant degradation in detection performance when the samplings of training data are deficient.This paper proposes a dimension-reduced approach to alleviate this problem.The dimension reduction includes two steps:firstly,the full array is divided into several subarrays;secondly,the test data and the training data at each subarray are transformed into the modal domain from the hydrophone domain.Then the modal-domain test data and training data at each subarray are processed to formulate the subarray statistic by using the GLRT theory.The final test statistic of the dimension-reduced ASD(DR-ASD)is obtained by summing all the subarray statistics.After the dimension reduction,the unknown parameters can be estimated more accurately so the DR-ASD achieves a better detection performance than the ASD.In order to achieve the optimal detection performance,the processing gain of the DR-ASD is deduced to choose a proper number of subarrays.Simulation experiments verify the improved detection performance of the DR-ASD compared with the ASD.
基金Project(52175445) supported by the National Natural Science Foundation of ChinaProject(ZZYJKT2020-09) supported by the State Key Laboratory of High Performance Complex Manufacturing (Central South University),China+1 种基金Projects(2020JJ4247, 2022JJ30743) supported by the Natural Foundation of Hunan Province,ChinaProject(1053320190337) supported by the Fundamental Research Funds for the Central University,China。
文摘Electron beam lithography(EBL) is a key technology in the fabrication of nanoscale silicon optical waveguide. The influence of exposure dose, the main process parameter of EBL, on the structure profile of poly-methyl methacrylate(PMMA) after development was studied using a silicon on insulator(SOI) wafer with 220 nm top silicon as the substrate. The relationship between exposure dose and structure pattern width after development was analyzed according to the measurement results. The optimum exposure dose of 220 μC/cm^(2) was found to obtain a final structure consistent with the designed mask value through subsequent processes. At the same time, according to the image segmentation curve tracking technology, the contour extraction process of the dose test results was carried out, and the relationship among mask design value, exposure dose and two-dimensional roughness of boundary contour was analyzed, which can provide reference for the subsequent electron beam lithography of the same substrate material.
文摘A cross-linkable fluorinated poly (ether ether ketone) (FPEEK) was synthesized for the fabrication of arrayed waveguide grating (AWG) multiplexer. The results of thermal gravimetric analysis (TGA) and near-infrared absorption spectrum show that the materials have high thermal stability and high optical transparency in the infrared communication region. The refractive index of FPEEK can be controlled easily by changing the fluorine content of the materials. The 32-channel AWG multiplexer is fabricated using the FPEEK and oxygen reactive ion etching technology. The AWG multiplexer exhibits that the insertion loss is from 12.8 to 17.8 dB and the channel crosstalk is less than-20 dB. The wavelength channel spacing and the center wavelength are 0.8nm and 1548nm, respectively.
基金Universiti Teknologi MARA for the financial support on this project.
文摘An optical code generating device for security access system application is presented. The code generating device constructed using asymmetric hollow optical waveguide coupler design provides a unique series of output light intensities which are successively used as an optical code. The design of the waveguide is made using two major components which are asymmetric Y-junction splitter and a linear taper. Waveguiding is done using a hollow waveguide structure. Construction of higher level 1×N hollow waveguide coupler is done utilizing a basic 1×2 asymmetric waveguide coupler design together with a cascaded design scheme. Non-sequential ray tracing of the asymmetric hollow optical waveguide couplers is performed to predict the optical transmission properties of the waveguide. A representation of the code combination that can be generated from the device is obtained using combinatory number theory.