期刊文献+
共找到15,166篇文章
< 1 2 250 >
每页显示 20 50 100
Research on Short-Term Electric Load Forecasting Using IWOA CNN-BiLSTM-TPA Model
1
作者 MEI Tong-da SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 北大核心 2025年第1期179-187,共9页
Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devi... Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devices have made power load data increasingly complex and volatile.This places higher demands on the prediction and analysis of power loads.In order to improve the prediction accuracy of short-term power load,a CNN-BiLSTMTPA short-term power prediction model based on the Improved Whale Optimization Algorithm(IWOA)with mixed strategies was proposed.Firstly,the model combined the Convolutional Neural Network(CNN)with the Bidirectional Long Short-Term Memory Network(BiLSTM)to fully extract the spatio-temporal characteristics of the load data itself.Then,the Temporal Pattern Attention(TPA)mechanism was introduced into the CNN-BiLSTM model to automatically assign corresponding weights to the hidden states of the BiLSTM.This allowed the model to differentiate the importance of load sequences at different time intervals.At the same time,in order to solve the problem of the difficulties of selecting the parameters of the temporal model,and the poor global search ability of the whale algorithm,which is easy to fall into the local optimization,the whale algorithm(IWOA)was optimized by using the hybrid strategy of Tent chaos mapping and Levy flight strategy,so as to better search the parameters of the model.In this experiment,the real load data of a region in Zhejiang was taken as an example to analyze,and the prediction accuracy(R2)of the proposed method reached 98.83%.Compared with the prediction models such as BP,WOA-CNN-BiLSTM,SSA-CNN-BiLSTM,CNN-BiGRU-Attention,etc.,the experimental results showed that the model proposed in this study has a higher prediction accuracy. 展开更多
关键词 Whale Optimization Algorithm Convolutional Neural Network Long short-term Memory Temporal Pattern Attention Power load forecasting
在线阅读 下载PDF
Theory Study and Application of the BP-ANN Method for Power Grid Short-Term Load Forecasting 被引量:12
2
作者 Xia Hua Gang Zhang +1 位作者 Jiawei Yang Zhengyuan Li 《ZTE Communications》 2015年第3期2-5,共4页
Aiming at the low accuracy problem of power system short-term load forecasting by traditional methods, a back-propagation artificial neural network (BP-ANN) based method for short-term load forecasting is presented ... Aiming at the low accuracy problem of power system short-term load forecasting by traditional methods, a back-propagation artificial neural network (BP-ANN) based method for short-term load forecasting is presented in this paper. The forecast points are related to prophase adjacent data as well as the periodical long-term historical load data. Then the short-term load forecasting model of Shanxi Power Grid (China) based on BP-ANN method and correlation analysis is established. The simulation model matches well with practical power system load, indicating the BP-ANN method is simple and with higher precision and practicality. 展开更多
关键词 BP-ANN short-term load forecasting of power grid multiscale entropy correlation analysis
在线阅读 下载PDF
Forecasting method of monthly wind power generation based on climate model and long short-term memory neural network 被引量:5
3
作者 Rui Yin Dengxuan Li +1 位作者 Yifeng Wang Weidong Chen 《Global Energy Interconnection》 CAS 2020年第6期571-576,共6页
Predicting wind power gen eration over the medium and long term is helpful for dispatchi ng departme nts,as it aids in constructing generation plans and electricity market transactions.This study presents a monthly wi... Predicting wind power gen eration over the medium and long term is helpful for dispatchi ng departme nts,as it aids in constructing generation plans and electricity market transactions.This study presents a monthly wind power gen eration forecast!ng method based on a climate model and long short-term memory(LSTM)n eural n etwork.A non linear mappi ng model is established between the meteorological elements and wind power monthly utilization hours.After considering the meteorological data(as predicted for the future)and new installed capacity planning,the monthly wind power gen eration forecast results are output.A case study shows the effectiveness of the prediction method. 展开更多
关键词 Wind power Monthly generation forecast Climate model LSTM neural network
在线阅读 下载PDF
Better use of experience from other reservoirs for accurate production forecasting by learn-to-learn method
4
作者 Hao-Chen Wang Kai Zhang +7 位作者 Nancy Chen Wen-Sheng Zhou Chen Liu Ji-Fu Wang Li-Ming Zhang Zhi-Gang Yu Shi-Ti Cui Mei-Chun Yang 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期716-728,共13页
To assess whether a development strategy will be profitable enough,production forecasting is a crucial and difficult step in the process.The development history of other reservoirs in the same class tends to be studie... To assess whether a development strategy will be profitable enough,production forecasting is a crucial and difficult step in the process.The development history of other reservoirs in the same class tends to be studied to make predictions accurate.However,the permeability field,well patterns,and development regime must all be similar for two reservoirs to be considered in the same class.This results in very few available experiences from other reservoirs even though there is a lot of historical information on numerous reservoirs because it is difficult to find such similar reservoirs.This paper proposes a learn-to-learn method,which can better utilize a vast amount of historical data from various reservoirs.Intuitively,the proposed method first learns how to learn samples before directly learning rules in samples.Technically,by utilizing gradients from networks with independent parameters and copied structure in each class of reservoirs,the proposed network obtains the optimal shared initial parameters which are regarded as transferable information across different classes.Based on that,the network is able to predict future production indices for the target reservoir by only training with very limited samples collected from reservoirs in the same class.Two cases further demonstrate its superiority in accuracy to other widely-used network methods. 展开更多
关键词 Production forecasting Multiple patterns Few-shot learning Transfer learning
在线阅读 下载PDF
Generalized load graphical forecasting method based on modal decomposition
5
作者 Lizhen Wu Peixin Chang +1 位作者 Wei Chen Tingting Pei 《Global Energy Interconnection》 EI CSCD 2024年第2期166-178,共13页
In a“low-carbon”context,the power load is affected by the coupling of multiple factors,which gradually evolves from the traditional“pure load”to the generalized load with the dual characteristics of“load+power su... In a“low-carbon”context,the power load is affected by the coupling of multiple factors,which gradually evolves from the traditional“pure load”to the generalized load with the dual characteristics of“load+power supply.”Traditional time-series forecasting methods are no longer suitable owing to the complexity and uncertainty associated with generalized loads.From the perspective of image processing,this study proposes a graphical short-term prediction method for generalized loads based on modal decomposition.First,the datasets are normalized and feature-filtered by comparing the results of Xtreme gradient boosting,gradient boosted decision tree,and random forest algorithms.Subsequently,the generalized load data are decomposed into three sets of modalities by modal decomposition,and red,green,and blue(RGB)images are generated using them as the pixel values of the R,G,and B channels.The generated images are diversified,and an optimized DenseNet neural network was used for training and prediction.Finally,the base load,wind power,and photovoltaic power generation data are selected,and the characteristic curves of the generalized load scenarios under different permeabilities of wind power and photovoltaic power generation are obtained using the density-based spatial clustering of applications with noise algorithm.Based on the proposed graphical forecasting method,the feasibility of the generalized load graphical forecasting method is verified by comparing it with the traditional time-series forecasting method. 展开更多
关键词 Load forecasting Generalized load Image processing DenseNet Modal decomposition
在线阅读 下载PDF
State-of-health estimation for fast-charging lithium-ion batteries based on a short charge curve using graph convolutional and long short-term memory networks
6
作者 Yvxin He Zhongwei Deng +4 位作者 Jue Chen Weihan Li Jingjing Zhou Fei Xiang Xiaosong Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期1-11,共11页
A fast-charging policy is widely employed to alleviate the inconvenience caused by the extended charging time of electric vehicles. However, fast charging exacerbates battery degradation and shortens battery lifespan.... A fast-charging policy is widely employed to alleviate the inconvenience caused by the extended charging time of electric vehicles. However, fast charging exacerbates battery degradation and shortens battery lifespan. In addition, there is still a lack of tailored health estimations for fast-charging batteries;most existing methods are applicable at lower charging rates. This paper proposes a novel method for estimating the health of lithium-ion batteries, which is tailored for multi-stage constant current-constant voltage fast-charging policies. Initially, short charging segments are extracted by monitoring current switches,followed by deriving voltage sequences using interpolation techniques. Subsequently, a graph generation layer is used to transform the voltage sequence into graphical data. Furthermore, the integration of a graph convolution network with a long short-term memory network enables the extraction of information related to inter-node message transmission, capturing the key local and temporal features during the battery degradation process. Finally, this method is confirmed by utilizing aging data from 185 cells and 81 distinct fast-charging policies. The 4-minute charging duration achieves a balance between high accuracy in estimating battery state of health and low data requirements, with mean absolute errors and root mean square errors of 0.34% and 0.66%, respectively. 展开更多
关键词 Lithium-ion battery State of health estimation Feature extraction Graph convolutional network Long short-term memory network
在线阅读 下载PDF
Artificial Intelligence Based Meteorological Parameter Forecasting for Optimizing Response of Nuclear Emergency Decision Support System
7
作者 BILAL Ahmed Khan HASEEB ur Rehman +5 位作者 QAISAR Nadeem MUHAMMAD Ahmad Naveed Qureshi JAWARIA Ahad MUHAMMAD Naveed Akhtar AMJAD Farooq MASROOR Ahmad 《原子能科学技术》 EI CAS CSCD 北大核心 2024年第10期2068-2076,共9页
This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weat... This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weather research and forecasting (WRF) model.Accurate meteorological data is indispensable for simulating the release of radioactive effluents,especially in dispersion modeling for nuclear emergency decision support systems.Simulation of meteorological conditions during nuclear emergencies using the conventional WRF model is very complex and time-consuming.Therefore,a new artificial neural network (ANN) based technique was proposed as a viable alternative for meteorological prediction.A multi-input multi-output neural network was trained using historical site-specific meteorological data to forecast the meteorological parameters.Comprehensive evaluation of this technique was conducted to test its performance in forecasting various parameters including atmospheric pressure,temperature,and wind speed components in both East-West and North-South directions.The performance of developed network was evaluated on an unknown dataset,and acquired results are within the acceptable range for all meteorological parameters.Results show that ANNs possess the capability to forecast meteorological parameters,such as temperature and pressure,at multiple spatial locations within a grid with high accuracy,utilizing input data from a single station.However,accuracy is slightly compromised when predicting wind speed components.Root mean square error (RMSE) was utilized to report the accuracy of predicted results,with values of 1.453℃for temperature,77 Pa for predicted pressure,1.058 m/s for the wind speed of U-component and 0.959 m/s for the wind speed of V-component.In conclusion,this approach offers a precise,efficient,and wellinformed method for administrative decision-making during nuclear emergencies. 展开更多
关键词 prediction of meteorological parameters weather research and forecasting model artificial neural networks nuclear emergency support system
在线阅读 下载PDF
FY-4A辐射产品在银川太阳能短临预报中的适用性研究
8
作者 严晓瑜 叶冬 +3 位作者 申彦波 纳丽 胡玥明 蒋婷 《太阳能学报》 北大核心 2025年第2期511-521,共11页
基于2022年FY-4A地表太阳入射辐射产品和同期地面气象站辐射观测资料,分析FY-4A反演辐射产品在宁夏银川的适用性,探讨其在银川太阳能资源短临预报中的应用情况,结果表明,2022年全年FY-4A整点总辐照度与银川气象站地面观测总辐照度整体... 基于2022年FY-4A地表太阳入射辐射产品和同期地面气象站辐射观测资料,分析FY-4A反演辐射产品在宁夏银川的适用性,探讨其在银川太阳能资源短临预报中的应用情况,结果表明,2022年全年FY-4A整点总辐照度与银川气象站地面观测总辐照度整体变化趋势基本一致,但FY-4A辐照度整体较地面观测偏高6.5%,且其变化幅度小于地面观测;除5、6、12月份外,其他各月FY-4A整点辐照度月平均值均较地面观测高,7—11月份两者差异最大;08:00—10:00和16:00—18:00FY-4A与地面观测辐照度差异较大,11:00—15:00两者差异较小;日照时数小于9 h时,FY-4A辐照度高于地面观测,大于等于9 h时,FY-4A低于地面观测;雨、雾、雪和霾天气下FY-4A辐照度较地面观测高,大风、扬沙、浮尘时FY-4A较地面观测低;基于FY-4A辐射产品的银川太阳能短临预报,随预报时间步长增加,均方根误差呈先缓慢增加后逐渐减小变化趋势,平均相对误差呈逐渐增大变化特点,相关系数无明显波动;全年整点预报时刻来看,12:00、15:00均方根误差略低,13:00、14:00均方根误差略高,4个时刻预报与实测辐照度相关性均较好;夏季预报效果较其他季节差。 展开更多
关键词 太阳辐照度 卫星数据 地面观测 适用性 短临预报 银川
在线阅读 下载PDF
Rapid urban flood forecasting based on cellular automata and deep learning
9
作者 BAI Bing DONG Fei +1 位作者 LI Chuanqi WANG Wei 《水利水电技术(中英文)》 北大核心 2024年第12期17-28,共12页
[Objective]Urban floods are occurring more frequently because of global climate change and urbanization.Accordingly,urban rainstorm and flood forecasting has become a priority in urban hydrology research.However,two-d... [Objective]Urban floods are occurring more frequently because of global climate change and urbanization.Accordingly,urban rainstorm and flood forecasting has become a priority in urban hydrology research.However,two-dimensional hydrodynamic models execute calculations slowly,hindering the rapid simulation and forecasting of urban floods.To overcome this limitation and accelerate the speed and improve the accuracy of urban flood simulations and forecasting,numerical simulations and deep learning were combined to develop a more effective urban flood forecasting method.[Methods]Specifically,a cellular automata model was used to simulate the urban flood process and address the need to include a large number of datasets in the deep learning process.Meanwhile,to shorten the time required for urban flood forecasting,a convolutional neural network model was used to establish the mapping relationship between rainfall and inundation depth.[Results]The results show that the relative error of forecasting the maximum inundation depth in flood-prone locations is less than 10%,and the Nash efficiency coefficient of forecasting inundation depth series in flood-prone locations is greater than 0.75.[Conclusion]The result demonstrated that the proposed method could execute highly accurate simulations and quickly produce forecasts,illustrating its superiority as an urban flood forecasting technique. 展开更多
关键词 urban flooding flood-prone location cellular automata deep learning convolutional neural network rapid forecasting
在线阅读 下载PDF
基于波动信息优选及切换输入机制的短期延长期风电集群功率预测
10
作者 杨茂 鞠超毅 +1 位作者 张薇 苏欣 《太阳能学报》 北大核心 2025年第3期546-558,共13页
在风电功率预测领域,现有短期时间尺度研究和应用的预见期最长为7d,缺乏对8~15d短期延长期时间尺度下的预测研究。针对上述问题,提出基于天气过程挖掘和切换机制的8~15d短期延长期预测框架,着重对未来出力水平进行预测,将历史选择分为... 在风电功率预测领域,现有短期时间尺度研究和应用的预见期最长为7d,缺乏对8~15d短期延长期时间尺度下的预测研究。针对上述问题,提出基于天气过程挖掘和切换机制的8~15d短期延长期预测框架,着重对未来出力水平进行预测,将历史选择分为波动性优先历史选择和稳定性优先历史选择,在波动性优先历史选择效果较差时,利用稳定性优先历史选择进行误差平衡。所提框架在甘肃省某风电集群进行验证,结果表明,所提框架均方根误差在8~15d所有时间尺度下平均降低0.84%~1.45%,在未来数值天气预报(NWP)可用性匮乏的情况下实现了8~15d预测,有效提高短期延长期预测的可靠性。 展开更多
关键词 风电功率 预测 切换机制 优选 短期 短期延长期
在线阅读 下载PDF
基于人体舒适度指数的高峰季节空调负荷预测方法
11
作者 韩平平 丁静雅 +3 位作者 吴红斌 仇茹嘉 徐斌 吴家毓 《太阳能学报》 北大核心 2025年第3期141-150,共10页
提出一种基于综合人体舒适度指数的高峰季节空调负荷预测方法,从而获得更加准确的空调负荷数据参与电网调控。首先,考虑到不同季节的负荷增量影响和数据样本范围,分别利用最大负荷比较法和基准负荷比较法得到更具可信度的空调负荷数据;... 提出一种基于综合人体舒适度指数的高峰季节空调负荷预测方法,从而获得更加准确的空调负荷数据参与电网调控。首先,考虑到不同季节的负荷增量影响和数据样本范围,分别利用最大负荷比较法和基准负荷比较法得到更具可信度的空调负荷数据;其次,计算包含温度、相对湿度和风速指标的主客观综合权重,构建考虑时空分布特性的人体舒适度模型,并验证其与空调负荷之间的关联性;最后,基于综合人体舒适度指数提取建模样本数据,并将其作为神经网络的输入,建立空调负荷预测模型。理论分析和算例验证表明所提方法在不同情景下可有效提高空调负荷预测精度。 展开更多
关键词 分布式发电 空调 负荷预测 人体舒适度指数 双向长短期记忆网络
在线阅读 下载PDF
利用混合深度学习算法的时空风速预测
12
作者 贵向泉 孟攀龙 +2 位作者 孙林花 秦三杰 刘靖红 《太阳能学报》 北大核心 2025年第3期668-678,共11页
风速预测的准确性始终不理想,为解决风速复杂的时空相关性和非线性问题,提出一种新颖的混合深度学习模型。首先,采用二次分解法将输入序列分解为具有不同频率振动模式的模态分量(IMF);使用图卷积神经网络(GCN)和双向长短期记忆网络(BiLS... 风速预测的准确性始终不理想,为解决风速复杂的时空相关性和非线性问题,提出一种新颖的混合深度学习模型。首先,采用二次分解法将输入序列分解为具有不同频率振动模式的模态分量(IMF);使用图卷积神经网络(GCN)和双向长短期记忆网络(BiLSTM)来预测高频分量;使用自适应图时空Transformer网络(ASTTN)来预测低频分量,以充分考虑输入序列的时空相关性。最后将高频分量和低频分量合并叠加,得到最终的预测结果。将该模型应用于甘肃省某风电场进行风速预测,实验结果表明,所提出混合深度学习模型能有效提高风速预测的准确性。 展开更多
关键词 风速 预测 深度学习 图卷积神经网络 双向长短期记忆网络 自适应图时空Transformer
在线阅读 下载PDF
多尺度特征提取的Transformer短期风电功率预测
13
作者 徐武 范鑫豪 +1 位作者 沈智方 刘洋 《太阳能学报》 北大核心 2025年第2期640-648,共9页
针对短期风电功率预测特征提取尺度单一问题,设计一种基于多尺度特征提取的Transformer短期风电功率预测模型(MTPNet)。首先,在Transformer构架的基础上,利用维数不变嵌入,设计多尺度特征提取网络挖掘风电功率序列本身时序特征,保证了... 针对短期风电功率预测特征提取尺度单一问题,设计一种基于多尺度特征提取的Transformer短期风电功率预测模型(MTPNet)。首先,在Transformer构架的基础上,利用维数不变嵌入,设计多尺度特征提取网络挖掘风电功率序列本身时序特征,保证了特征提取时维数不被破坏;其次,利用融合自注意力机制的长短期记忆网络挖掘气象条件与功率之间的全局依赖关系;最后,融合风电功率序列本身时序特征和气象条件依赖关系,实现短期风电功率预测。实例仿真结果表明,MTPNet模型预测精度得到提升;消融实验证明了模型各模块的可靠性和有效性,具有一定的实用价值。 展开更多
关键词 风电功率预测 TRANSFORMER 注意力机制 特征提取 长短期记忆网络 维数不变嵌入层
在线阅读 下载PDF
两种血清指标与老年大动脉粥样硬化性急性脑梗死患者短期预后的关系
14
作者 张辉 陈亚伦 +3 位作者 孙新超 宋彦 王民珩 高媛媛 《中华老年心脑血管病杂志》 北大核心 2025年第2期206-210,共5页
目的探讨老年大动脉粥样硬化(large artery atherosclerotic,LAA)性急性脑梗死(acute ischemic stroke,AIS)患者血清程序性细胞死亡因子4(programmed cell death 4,PDCD4)、解整合素-金属蛋白酶10(a disingtergrin and metalloprotease ... 目的探讨老年大动脉粥样硬化(large artery atherosclerotic,LAA)性急性脑梗死(acute ischemic stroke,AIS)患者血清程序性细胞死亡因子4(programmed cell death 4,PDCD4)、解整合素-金属蛋白酶10(a disingtergrin and metalloprotease 10,ADAM10)水平与短期预后的关系。方法回顾性选取2022年4月至2024年4月南阳市第二人民医院诊治的LAA性AIS患者122例作为观察组,根据神经功能和预后分为轻度组29例、中度组68例、重度组25例,预后良好组72例和预后不良组50例。同期选取健康体检者125例作为对照组。采用酶联免疫吸附测定法检测血清PDCD4、ADAM10水平,采用多因素logistic回归分析血清PDCD4、ADAM10水平与LAA性AIS患者短期预后的关系,采用ROC曲线分析血清PDCD4、ADAM10对LAA性AIS患者短期预后的预测价值。结果观察组血清PDCD4、ADAM10水平显著高于对照组,差异有统计学意义(P<0.01)。重度组和中度组血清PDCD4、ADAM10水平显著高于轻度组,差异有统计学意义(P<0.05);重度组血清PDCD4、ADAM10水平显著高于中度组(P<0.05)。预后不良组重度神经缺损、高血压、Hcy水平显著高于预后良好组,差异有统计学意义(P<0.01)。PDCD4、ADAM10与LAA性AIS患者短期预后不良有关(OR=2.759,95%CI:1.479~5.146,P=0.001;OR=2.818,95%CI:1.559~5.093,P=0.001)。PDCD4、ADAM10单独和联合预测短期预后不良的AUC分别为0.840、0.864、0.935,联合预测的AUC显著优于单独预测(Z=2.687、2.008,P<0.05)。结论发生短期预后不良的LAA性AIS患者血清PDCD4、ADAM10水平较高,二者联合预测短期预后不良的效能较佳。 展开更多
关键词 动脉粥样硬化 脑梗死 预后 回归分析 预测
在线阅读 下载PDF
考虑季节性与趋势特征的光伏功率预测模型研究
15
作者 王东风 李青博 +1 位作者 张博洋 黄宇 《太阳能学报》 北大核心 2025年第3期348-356,共9页
针对光伏功率预测中未充分考虑光伏功率季节性与趋势特征的问题,提出一种基于Neural-Prophet(NP)与深度神经网络的光伏功率预测方法。首先,通过互信息法筛选出影响光伏功率的主要因素,利用NP模型对光伏功率建模得到光伏功率的季节性与... 针对光伏功率预测中未充分考虑光伏功率季节性与趋势特征的问题,提出一种基于Neural-Prophet(NP)与深度神经网络的光伏功率预测方法。首先,通过互信息法筛选出影响光伏功率的主要因素,利用NP模型对光伏功率建模得到光伏功率的季节性与趋势特征,将季节性与趋势特征及主要影响因素作为模型输入。其次,采用改进残差网络(ResNet)和双向门控循环单元(BiGRU)建立NP-ResNet-BiGRU光伏功率预测模型并完成光伏功率预测。利用春夏秋冬四季的数据进行实验,结果显示相较于其他方法,所提方法的MAE至少提升7.44%,RMSE至少提升4.62%。 展开更多
关键词 光伏发电 预测 神经网络 残差网络 Neural-Prophet
在线阅读 下载PDF
基于CEEMDAN-SSA-ELM-LSTM模型的地铁车站深基坑支护桩水平变形预测
16
作者 刘彦伟 彭洁 +4 位作者 任连伟 高保彬 郭佳奇 王泽武 韩红凯 《防灾减灾工程学报》 北大核心 2025年第1期34-46,共13页
灾害监测与预测是岩土工程领域至关重要的任务之一,但工程监测数据中的非平稳性和非线性一直是预测的难点。为应对此挑战,引入数据驱动算法极限学习机(ELM)、长短时记忆神经网络模型(LSTM),结合自适应噪声完备集合经验模态分解(CEEMDAN... 灾害监测与预测是岩土工程领域至关重要的任务之一,但工程监测数据中的非平稳性和非线性一直是预测的难点。为应对此挑战,引入数据驱动算法极限学习机(ELM)、长短时记忆神经网络模型(LSTM),结合自适应噪声完备集合经验模态分解(CEEMDAN)和麻雀搜索算法(SSA),提出了一种改进的地铁车站深基坑变形组合预测模型。首先,通过CEEMDAN将支护桩水平位移序列分解为趋势项和波动项,降低数据的非平稳性。其次,为充分考虑分解序列差异的非线性特征,分别采用SSA优化后的ELM和LSTM模型对低频趋势项与高频波动项进行预测,并将结果叠加重构为最终预测值。最后,以郑州市某地铁车站深基坑为例,通过设置消融实验、对比实验和泛化性验证实验,系统评估了模型的准确性与实用性。结果表明:该模型在精度和稳定性方面显著优于其他模型,其中R2提升了2.88%~23.62%,RMSE和MAPE分别降低了6.63%~41.13%、8.08%~64.79%。这充分说明模型在应对数据非平稳性和捕捉非线性特征方面表现出色,具备良好的可靠性和广泛的应用前景,可为岩土工程中的灾害防治提供新的思路和技术支持。 展开更多
关键词 基坑工程 支护桩 变形监测 组合预测 深度学习
在线阅读 下载PDF
自然降雨驱动的光伏组件清洁周期动态更新策略研究
17
作者 刘卫东 吴锦华 +1 位作者 胡珊 闻海浪 《太阳能学报》 北大核心 2025年第1期615-623,共9页
提出一种考虑自然降雨对灰尘沉积的清洁效果及其对发电量影响的光伏组件清洁周期的动态分析设计方法。该方法采用关联图法和相关性分析确定影响光伏组件清洁及发电量的主要因素,以此为基础建立降雨量和灰尘沉积的定量关系和考虑灰尘沉... 提出一种考虑自然降雨对灰尘沉积的清洁效果及其对发电量影响的光伏组件清洁周期的动态分析设计方法。该方法采用关联图法和相关性分析确定影响光伏组件清洁及发电量的主要因素,以此为基础建立降雨量和灰尘沉积的定量关系和考虑灰尘沉积影响的发电量预测模型,再将其应用于动态更新或调整清洁周期。所提出方法应用于浙江省杭州市某光伏电站清洁策略的制定,结果表明清洁周期动态更新策略下的清洁总成本相较于不清洁时降低20.04%,相较于固定清洁周期方法降低3.63%。 展开更多
关键词 光伏组件 灰尘 降雨 发电量预测 清洁策略
在线阅读 下载PDF
基于MRI的瘤周水肿特征对浸润性乳腺癌淋巴结转移负荷的预测价值
18
作者 罗红兵 陈哲 +2 位作者 肖茜茜 任静 周鹏 《中国医学影像学杂志》 北大核心 2025年第1期55-62,共8页
目的分析基于MRI的瘤周水肿特征对乳腺癌淋巴结转移负荷的预测价值。资料与方法回顾性收集四川省肿瘤医院2017年9月—2019年2月有完整术前MRI资料和术后病理资料的213例浸润性乳腺癌。根据术后病理诊断的淋巴结转移数量,将病例分为高负... 目的分析基于MRI的瘤周水肿特征对乳腺癌淋巴结转移负荷的预测价值。资料与方法回顾性收集四川省肿瘤医院2017年9月—2019年2月有完整术前MRI资料和术后病理资料的213例浸润性乳腺癌。根据术后病理诊断的淋巴结转移数量,将病例分为高负荷淋巴结转移组47例(转移淋巴结总数>2枚)和低负荷淋巴结转移组166例(转移淋巴结总数≤2枚)。在T2WI序列上,分析每例的乳腺癌瘤周水肿(包括瘤周水肿类型和水肿程度)特征。在DCE-MRI序列上,根据乳腺影像报告和数据系统分类术语分析乳腺癌的MRI特征。通过单因素分析瘤周水肿等T2WI特征和乳腺癌MRI特征对淋巴结转移负荷的诊断价值,将有显著意义的特征进行多因素Logistic回归分析,并建立诊断模型。采用受试者工作特征曲线评价模型对乳腺癌淋巴结转移负荷的诊断效能,根据约登指数计算模型的诊断效能指标。结果本研究的高负荷转移淋巴结占22.1%(47/213)。单因素分析结果显示,瘤周水肿程度(OR=18.70,P<0.001)、瘤周水肿类型(OR=16.00,P<0.001)、肿瘤最长径(OR=1.40,P=0.025)和肿瘤最短径(OR=2.01,P=0.003)对高负荷淋巴结转移有预测价值;多因素Logistic回归分析结果显示,最终对浸润性乳腺癌高负荷淋巴结转移有价值的特征是瘤周水肿水肿特征,包括瘤周水肿程度(OR=8.02,P<0.001)和瘤周水肿类型(OR=5.53,P=0.001),最终诊断模型预测浸润性乳腺癌高负荷淋巴结转移的曲线下面积为0.842,敏感度为0.766,特异度为0.861,阳性预测值为0.610,阴性预测值为0.929。结论术前MRI的瘤周水肿特征对浸润性乳腺癌淋巴结转移负荷有很好的预测价值,尤其是对低负荷淋巴结转移状态预测价值更高。 展开更多
关键词 乳腺肿瘤 淋巴转移 磁共振成像 水肿 诊断 鉴别 预测
在线阅读 下载PDF
社交平台的时尚流行偏好与机构预测结果的差异性分析
19
作者 刘丽娴 陈明 +1 位作者 李浩 向忠 《毛纺科技》 北大核心 2025年第1期90-96,共7页
为了分析流行趋势机构预测结果与消费者时尚流行偏好的差异,以WGSN、亦服科技、蝶讯网这3家在时尚趋势预测领域颇具影响力的机构作为研究对象,梳理目前国内外消费者时尚偏好、时尚流行趋势预测的研究现状,以小红书、微博作为消费者偏好... 为了分析流行趋势机构预测结果与消费者时尚流行偏好的差异,以WGSN、亦服科技、蝶讯网这3家在时尚趋势预测领域颇具影响力的机构作为研究对象,梳理目前国内外消费者时尚偏好、时尚流行趋势预测的研究现状,以小红书、微博作为消费者偏好数据源,利用文本挖掘、关键词频统计、相似性分析等方法,将3组基于专家转述的流行趋势关键词分别与平台趋势关键词进行对比。结果表明:3组基于专家转述的流行趋势关键词与平台趋势关键词具有显著性差异,其中蝶讯网的预测结果与消费者偏好相似度较高,其次是亦服科技,WGSN的预测与消费者偏好的差异性较大。可为时尚趋势预测行业更好地满足消费者需求提供参考。 展开更多
关键词 消费者时尚偏好 趋势预测 社交平台 文本数据 差异性分析
在线阅读 下载PDF
性信息素诱捕法和紫外光灯光诱捕法对我国西南区域番茄潜叶蛾的监测诱捕效率及成虫发生期分析
20
作者 张桂芬 张毅波 +11 位作者 冼晓青 李萍 刘万才 曾娟 刘慧 黄聪 王玉生 卞悦 李亚红 王田珍 刘万学 万方浩 《植物保护》 北大核心 2025年第2期225-236,287,共13页
为明确对番茄潜叶蛾Tuta absoluta的最佳监测方法,采用性信息素诱捕法和紫外光灯光诱捕法,在我国西南区域对番茄潜叶蛾进行田间系统监测研究,评价不同方法的监测效率,分析成虫发生期。结果显示,尽管紫外光灯光诱捕法对有益节肢动物(包... 为明确对番茄潜叶蛾Tuta absoluta的最佳监测方法,采用性信息素诱捕法和紫外光灯光诱捕法,在我国西南区域对番茄潜叶蛾进行田间系统监测研究,评价不同方法的监测效率,分析成虫发生期。结果显示,尽管紫外光灯光诱捕法对有益节肢动物(包括自然天敌和传粉昆虫)有一些不利影响,但诱捕率较低,仅占靶标害虫和有益节肢动物总诱捕量的0.53%,而且紫外光灯光诱捕法对4个茬口番茄田的番茄潜叶蛾成虫诱捕率更高,累计诱蛾量为2158.5~16966.4头/诱捕器,是性信息素诱捕法的1.47~3.73倍,逐日诱蛾量显著高于性信息素诱捕法(P<0.001),可采用该诱捕法对盛发期成虫进行大量诱集诱杀。与灯光诱捕监测法相比,性信息素诱捕法监测到的番茄潜叶蛾成虫具有蛾峰期早、蛾峰期明显的特点,更能准确反映番茄潜叶蛾的田间发生趋势,且具有专一性强、对有益节肢动物安全等优点,可作为番茄潜叶蛾田间种群监测预报的一项重要手段。在西南区域的保护地条件下,2月下旬至9月下旬为番茄潜叶蛾主要发生期,也是防治的关键时期;1月上旬至2月中旬为发生低谷期,10月初至11月底为偶发期;基于性信息素诱捕法数据分析,4月下旬-9月底,番茄潜叶蛾每25~30 d发生1代。2023年春夏茬番茄田的4个成虫盛发期分别为4月下旬、5月中下旬、6月中下旬和7月中下旬;2022年夏秋茬番茄田的2个成虫盛发期分别为8月中下旬和9月中旬。研究结果对番茄潜叶蛾的监测预警和科学防控具有重要意义。 展开更多
关键词 番茄潜叶蛾 成虫发生期预测 性信息素诱捕 监测预报 紫外光灯光诱捕
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部