By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) for...By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) forecasting model, an improved SVM model named CPSO-SVM model was proposed. The new model was applied to predicting the short term load, and the improved effect of the new model was proved. The simulation results of the South China Power Market’s actual data show that the new method can effectively improve the forecast accuracy by 2.23% and 3.87%, respectively, compared with the PSO-SVM and SVM methods. Compared with that of the PSO-SVM and SVM methods, the time cost of the new model is only increased by 3.15 and 4.61 s, respectively, which indicates that the CPSO-SVM model gains significant improved effects.展开更多
智能电网的发展认识到短期电力净负荷预测对综合能源系统(integrated energy system,IES)的重要性。净负荷预测代表用电负荷与安装的可再生能源之间的差异,是能量管理和优化调度的基础。为解决IES波动性大,传统统计模型预测精较差的问题...智能电网的发展认识到短期电力净负荷预测对综合能源系统(integrated energy system,IES)的重要性。净负荷预测代表用电负荷与安装的可再生能源之间的差异,是能量管理和优化调度的基础。为解决IES波动性大,传统统计模型预测精较差的问题,该文提出一种基于时空图卷积网络(spatial temporal graph convolutional networks,STGCN)和Transformer相结合的综合能源系统短期负荷预测模型。首先,利用STGCN作为输入嵌入层对多元输入序列进行编码,填补Transformer中没有充分考虑相关信息的空白。然后,利用Transformer中的自注意机制捕获序列数据的时间依赖性。最后,利用前馈神经网络输出预测负荷值。以浙江省某地区电力数据集为例,与其他4种预测模型相比较平均绝对百分比误差均在5%以内,结果表明该文模型具有较高的预测精度和稳定性。展开更多
为了保障城市电网规划质量和做好电力电量平衡,准确的中长期电力负荷预测变得尤为重要。针对现有方法在利用城市区域间空间关联性方面的不足,提出了一种基于动态时间规整(dynamic time warping,DTW)和时空注意力图卷积(spatio-temporal ...为了保障城市电网规划质量和做好电力电量平衡,准确的中长期电力负荷预测变得尤为重要。针对现有方法在利用城市区域间空间关联性方面的不足,提出了一种基于动态时间规整(dynamic time warping,DTW)和时空注意力图卷积(spatio-temporal attention graph convolution,ASTGCN)的预测方法。首先,通过深入分析目标城市各区域间的相关性,建立了耦合关系;其次,利用DTW算法构建邻接矩阵,捕捉城市各区域间的时空相关性;然后,应用ASTGCN模型预测各区域的负荷,以捕捉负荷的时空特征;最后,通过合并各区域的预测结果,得到整体的城市预测负荷。实验结果表明:所提方法能够更全面地捕捉城市中的时空关系,显著提高中长期负荷预测精度。展开更多
基金Project(70572090) supported by the National Natural Science Foundation of China
文摘By adopting the chaotic searching to improve the global searching performance of the particle swarm optimization (PSO), and using the improved PSO to optimize the key parameters of the support vector machine (SVM) forecasting model, an improved SVM model named CPSO-SVM model was proposed. The new model was applied to predicting the short term load, and the improved effect of the new model was proved. The simulation results of the South China Power Market’s actual data show that the new method can effectively improve the forecast accuracy by 2.23% and 3.87%, respectively, compared with the PSO-SVM and SVM methods. Compared with that of the PSO-SVM and SVM methods, the time cost of the new model is only increased by 3.15 and 4.61 s, respectively, which indicates that the CPSO-SVM model gains significant improved effects.
文摘准确预测台区的电力负荷,能够促使电力企业合理安排调度计划,保障台区电力安全和经济稳定运行。为了充分挖掘电力负荷数据的特征,提高预测的精度,提出一种基于自适应辛几何模态分解(adaptive symplectic geometry mode decomposition,ASGMD)、多元线性回归(multiple linear regression,MLR)和卷积长短时记忆(convolutional long short-term memory,CLSTM)网络的电力负荷预测方法。首先,应用ASGMD将台区负荷数据分解为弱相关和强相关两种分量;然后,利用MLR和CLSTM分别对上述两种分量分别进行预测;最后,组合各模型结果,得到最终负荷预测值。实例分析结果表明,所提模型较其他模型具有更高的预测准确度。