期刊文献+
共找到422篇文章
< 1 2 22 >
每页显示 20 50 100
A Study on Short Text Matching Method Based on KS-BERT Algorithm
1
作者 YANG Hao-wen SUN Mei-feng 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期164-173,共10页
To improve the accuracy of short text matching,a short text matching method with knowledge and structure enhancement for BERT(KS-BERT)was proposed in this study.This method first introduced external knowledge to the i... To improve the accuracy of short text matching,a short text matching method with knowledge and structure enhancement for BERT(KS-BERT)was proposed in this study.This method first introduced external knowledge to the input text,and then sent the expanded text to both the context encoder BERT and the structure encoder GAT to capture the contextual relationship features and structural features of the input text.Finally,the match was determined based on the fusion result of the two features.Experiment results based on the public datasets BQ_corpus and LCQMC showed that KS-BERT outperforms advanced models such as ERNIE 2.0.This Study showed that knowledge enhancement and structure enhancement are two effective ways to improve BERT in short text matching.In BQ_corpus,ACC was improved by 0.2%and 0.3%,respectively,while in LCQMC,ACC was improved by 0.4%and 0.9%,respectively. 展开更多
关键词 Deep learning short text matching Graph attention network Knowledge enhancement
在线阅读 下载PDF
融合ERNIE与知识增强的临床短文本分类研究
2
作者 温浩 杨洋 《计算机工程与应用》 北大核心 2025年第8期108-116,共9页
提出一种引入专业医疗知识与文本独特知识的ERNIE模型用于识别无规则的临床短文本。目前ERNIE模型具有一定的医疗领域知识,但是在处理下游任务时无法引入专业医疗知识与文本独特知识,因此为提高临床短文本分类的精确度与效率,提出KW-ERN... 提出一种引入专业医疗知识与文本独特知识的ERNIE模型用于识别无规则的临床短文本。目前ERNIE模型具有一定的医疗领域知识,但是在处理下游任务时无法引入专业医疗知识与文本独特知识,因此为提高临床短文本分类的精确度与效率,提出KW-ERNIE-BiGRU模型。该模型通过引入医学知识与文本独特知识的ERNIE模型训练文本的特征向量,利用BiGRU强化上下文信息,最终在输出层进行文本分类。通过在真实的临床文本的验证与对比实验,KW-ERNIE-BiGRU模型的精确率、召回率、宏F1分别为93.4%、92.1%、92.7%,均优于其他模型。 展开更多
关键词 深度学习 知识图谱 ERNIE 语义强化 临床短文本分类
在线阅读 下载PDF
基于情感增强非参数模型的社交媒体观点聚类
3
作者 刘勘 陈昱 何佳瑞 《中文信息学报》 北大核心 2025年第3期148-158,共11页
观点分析对于社交媒体这一关键的网络舆论阵地有着重要的现实意义。该文基于非参数模型的文本聚类技术,将社交媒体文本根据用户主张的观点汇总,直观呈现用户群体所持有的不同立场。针对社交媒体文本长度短、数量多、情感丰富等特点,该... 观点分析对于社交媒体这一关键的网络舆论阵地有着重要的现实意义。该文基于非参数模型的文本聚类技术,将社交媒体文本根据用户主张的观点汇总,直观呈现用户群体所持有的不同立场。针对社交媒体文本长度短、数量多、情感丰富等特点,该文提出使用情感分布增强(Sentiment Distribution Enhanced,SDE)方法改进现有基于狄利克雷过程混合模型的短文本流聚类算法,以高斯分布建模文本情感,并推导相应的坍缩吉布斯采样算法推断参数。该方法在捕获文本情感特征的同时,能够自动确定聚类簇数量并实现观点聚类。与现有先进方法在Tweets、Google News数据集上的对比实验显示,该文提出的方法在标准化互信息、准确度等指标上取得了超越现有模型的聚类表现,并且在主观性较强的数据集上具有更显著的优势。 展开更多
关键词 观点分析 短文本流聚类 非参数模型 社交媒体
在线阅读 下载PDF
KAACNN:融合知识图谱和预训练模型的短文本多标签分类方法
4
作者 陶冶 徐锴 +2 位作者 刘天宇 鲁超峰 王浩杰 《中文信息学报》 北大核心 2025年第3期96-106,共11页
短文本分类是自然语言处理的重要任务之一。与段落或文档不同,短文本不完全遵循语法规则,长度短并且没有足够的上下文信息,这给短文本分类带来了很大的挑战。该文提出一种结合知识图谱和预训练语言模型的短文本分类方法,一方面使用预训... 短文本分类是自然语言处理的重要任务之一。与段落或文档不同,短文本不完全遵循语法规则,长度短并且没有足够的上下文信息,这给短文本分类带来了很大的挑战。该文提出一种结合知识图谱和预训练语言模型的短文本分类方法,一方面使用预训练语言模型提高短文本的文本表示能力;另一方面从外部知识库中检索短文本概念知识,并利用注意力机制将其与短文本结合用于分类任务。此外,针对数据集类别分布不均衡的问题,该文提出基于领域类别知识图谱的数据增强方法。在三个公共数据集和一个汽车领域客户原话数据集上进行了实验,结果表明,引入知识图谱和预训练语言模型的分类方法优于目前先进的短文本分类方法,证明了外部知识库和预训练语言模型的先验知识在短文本分类中的有效性。 展开更多
关键词 知识图谱 注意力机制 预训练语言模型 数据增强 短文本分类
在线阅读 下载PDF
基于特征增强的农业短文本语义智能匹配方法研究
5
作者 金宁 郭宇峰 +2 位作者 渠丽娜 缪祎晟 吴华瑞 《农业机械学报》 北大核心 2025年第5期395-404,共10页
针对农业短文本数据特征词语少、语义特征稀疏、冗余度高、价值密度低等问题,构建了一种利用多尺度通道注意力算法融合多语义特征的语义匹配模型Font_MBAFF,以提升农业短文本的语义匹配性能。首先利用汉字偏旁部首和四角号码丰富短文本... 针对农业短文本数据特征词语少、语义特征稀疏、冗余度高、价值密度低等问题,构建了一种利用多尺度通道注意力算法融合多语义特征的语义匹配模型Font_MBAFF,以提升农业短文本的语义匹配性能。首先利用汉字偏旁部首和四角号码丰富短文本特征;然后利用多尺度卷积核通道注意力加权网络MSCN和基于多头自注意力的双向长短期记忆网络Multi_SAB分别从空间和时间提取语义特征;最后利用文本注意力融合机制TEXTAFF对多种特征进行智能融合。试验结果表明,Font_MBAFF模型可有效弥补短文本特征词少的不足,优化文本特征提取及特征融合,语义匹配正确率达到96.42%,与MaLSTM、BiLSTM、BiLSTM_Self-attention、TEXTCNN_Attention、Sentence-BERT等5种语义匹配模型相比优势明显,正确率至少高2.07个百分点。 展开更多
关键词 农业短文本 语义匹配 字形特征表示 多特征融合
在线阅读 下载PDF
基于迁移学习的农业短文本语义相似度计算方法
6
作者 金宁 郭宇峰 +2 位作者 韩晓东 缪祎晟 吴华瑞 《智慧农业(中英文)》 2025年第1期33-43,共11页
[目的/意义]农业领域高质量的语义相似度计算是推动农业技术推广信息化、智能化发展的重要基础。针对现有文本语义相似度计算模型特征提取不全面、高质量标注数据集少等问题,提出一种基于迁移学习和BERT (Bidirectional Encoder Represe... [目的/意义]农业领域高质量的语义相似度计算是推动农业技术推广信息化、智能化发展的重要基础。针对现有文本语义相似度计算模型特征提取不全面、高质量标注数据集少等问题,提出一种基于迁移学习和BERT (Bidirectional Encoder Representations from Transformers)预训练模型的农业短文本语义相似度计算模型CWPT-TSBERT (Chinese-based Wordpiece Tokenization and Transfer-learning by Sentence BERT)。[方法] CWPT-TSBERT依托孪生网络架构,利用迁移学习策略在大规模通用领域标注数据集进行模型预训练,解决农业文本标注数据集少、语义稀疏性高等问题。提出面向中文的子词单元分词方法 CWPT拆分汉字,增强字向量的语义特征表示,进一步丰富了短文本语义特征表达。根据迁移学习的微调机制,利用SBERT (Sentence BERT)模型提取字向量,挖掘汉字间及字形结构间关联关系,提高模型语义相似度计算的正确率。[结果和讨论] CWPT-TSBERT模型的语义相似度计算正确率达到97.18%,高于基于卷积神经网络的TextCNN_Attention、基于循环神经网络的MaLSTM (Manhattan Long Short-Term Memory),以及基于BERT预训练模型的SBERT等12种模型。[结论] CWPT-TSBERT模型在小规模农业短文本数据集上语义相似性计算正确率较高,性能优势明显,为语义智能匹配提供了有效的技术参考。 展开更多
关键词 迁移学习 农业短文本 语义相似度计算 字形特征 知识智能服务 大模型
在线阅读 下载PDF
融合TF-IDF和LDA的中文FastText短文本分类方法 被引量:33
7
作者 冯勇 屈渤浩 +2 位作者 徐红艳 王嵘冰 张永刚 《应用科学学报》 CAS CSCD 北大核心 2019年第3期378-388,共11页
FastText文本分类模型具有快速高效的优势,但直接将其用于中文短文本分类则存在精确率不高的问题.为此提出一种融合词频-逆文本频率(term frequency-inverse document frequency, TF-IDF)和隐含狄利克雷分布(latent Dirichlet allocatio... FastText文本分类模型具有快速高效的优势,但直接将其用于中文短文本分类则存在精确率不高的问题.为此提出一种融合词频-逆文本频率(term frequency-inverse document frequency, TF-IDF)和隐含狄利克雷分布(latent Dirichlet allocation, LDA)的中文FastText短文本分类方法.该方法在FastText文本分类模型的输入阶段对n元语法模型处理后的词典进行TF-IDF筛选,使用LDA模型进行语料库主题分析,依据所得结果对特征词典进行补充,从而在计算输入词序列向量均值时偏向高区分度的词条,使其更适用于中文短文本分类环境.对比实验结果可知,所提方法在中文短文本分类方面具有更高的精确率. 展开更多
关键词 中文短文本分类 Fasttext 词频-逆文本频率 词向量 隐含狄利克雷分布
在线阅读 下载PDF
融合类别特征扩展与N-gram子词过滤的fastText短文本分类 被引量:6
8
作者 李志明 孙艳 +1 位作者 何宜昊 申利民 《小型微型计算机系统》 CSCD 北大核心 2022年第8期1596-1601,共6页
以提升fastText短文本分类模型性能为目标,从获取高质量的类别特征、降低N-gram子词中低类别区分贡献度子词对模型学习高类别区分贡献度语义特征时产生的干扰角度展开研究,提出基于TF-IDF的LDA类别特征提取方法以提升类别特征质量,提出... 以提升fastText短文本分类模型性能为目标,从获取高质量的类别特征、降低N-gram子词中低类别区分贡献度子词对模型学习高类别区分贡献度语义特征时产生的干扰角度展开研究,提出基于TF-IDF的LDA类别特征提取方法以提升类别特征质量,提出基于词汇信息熵的N-gram子词过滤方法过滤N-gram子词中低类别区分贡献度子词,并构建更专注于高类别区分贡献度语义特征学习的EF-fastText短文本分类模型.实验结果表明基于TF-IDF的LDA类别特征提取方法,以及基于词汇信息熵的N-gram子词过滤方法对于EF-fastText短文本分类模型性能提升是有效性的. 展开更多
关键词 短文本分类 fasttext 类别特征 词汇信息熵 N-GRAM
在线阅读 下载PDF
基于语义分类的物联网固件中第三方组件识别
9
作者 马峰 于丹 +2 位作者 杨玉丽 马垚 陈永乐 《计算机工程与设计》 北大核心 2025年第1期274-281,共8页
为扩大物联网固件中第三方组件识别范围,从软件供应链层面研究物联网固件安全,提出一种基于语义短文本分类的第三方组件识别方法。通过固件解压提取内部第三方组件和模拟组件运行的方式获取组件语义输出数据,利用Skip-gram将语义输出转... 为扩大物联网固件中第三方组件识别范围,从软件供应链层面研究物联网固件安全,提出一种基于语义短文本分类的第三方组件识别方法。通过固件解压提取内部第三方组件和模拟组件运行的方式获取组件语义输出数据,利用Skip-gram将语义输出转化为词嵌入表示,通过卷积神经网络和双向门控循环单元分别提取语义信息局部特征和全局特征,经过多头注意力机制区分关键语义特征,输入到Softmax分类器中实现可用于识别组件的语义信息分类。通过在10个流行的物联网生产商发布的5453个固件上进行实验,验证了该方法可有效识别第三方组件。 展开更多
关键词 物联网 软件供应链 固件安全 短文本分类 卷积神经网络 双向门控循环单元 多头注意力
在线阅读 下载PDF
融合双通道特征信息的医疗短文本分类模型
10
作者 李晨 刘纳 +2 位作者 郑国风 杨杰 道路 《现代电子技术》 北大核心 2025年第13期123-132,共10页
针对医疗短文本存在特征稀疏、语义歧义和提取短文本特征不充分等问题,提出融合双通道特征的医疗短文本分类模型(EBDF)。该模型利用预训练模型得到动态词向量,使模型包含更丰富的语义信息;之后利用BiLSTM获取全局文本特征信息和DPECNN... 针对医疗短文本存在特征稀疏、语义歧义和提取短文本特征不充分等问题,提出融合双通道特征的医疗短文本分类模型(EBDF)。该模型利用预训练模型得到动态词向量,使模型包含更丰富的语义信息;之后利用BiLSTM获取全局文本特征信息和DPECNN获取深层次的局部文本特征信息,为了提高模型的鲁棒性和泛化能力,采用FGM对抗训练算法对数据进行扰动;最后,将双通道的特征信息进行特征融合获得最终的文本表示。EBDF模型在三个医疗领域和两个通用领域的短文本数据集上与效果较好的模型相比,准确率提升约0.57%~6.16%,F1值提高约0.65%~5.80%。 展开更多
关键词 医疗文本挖掘 短文本分类 特征融合 BiLSTM DPECNN 双通道
在线阅读 下载PDF
外部知识与内部上下文语义聚合的短文本新闻虚假检测模型
11
作者 邱艳芳 赵振宇 +3 位作者 孙志杰 马坤 纪科 陈贞翔 《济南大学学报(自然科学版)》 北大核心 2025年第4期569-575,584,共8页
为了解决短文本新闻语义特征稀疏以及忽略了外部知识与短文本新闻语义之间同源关联性的问题,提出一种外部知识与内部上下文语义聚合的短文本新闻虚假检测模型(EKCS-ST),构建新闻特征信息网络,包含新闻主题、作者、实体3种外部知识,丰富... 为了解决短文本新闻语义特征稀疏以及忽略了外部知识与短文本新闻语义之间同源关联性的问题,提出一种外部知识与内部上下文语义聚合的短文本新闻虚假检测模型(EKCS-ST),构建新闻特征信息网络,包含新闻主题、作者、实体3种外部知识,丰富短文本新闻语义特征,通过图卷积生成新闻的外部知识图特征;将新闻文本输入到文本编码器中捕获新闻内部上下文语义特征;将外部知识图特征和内部上下文语义特征用于上下文感知计算,加强外部知识与上下文语义的关联性;使用注意力机制筛选和加强新闻关键特征,并且通过调高少数类新闻的损失误差,缓解数据不均衡问题。结果表明,本文所提模型的F_(1)值即精确率和召回率的调和平均值为0.86,比BERT、TextGCN等模型分别高18%、17%,验证了模型的有效性。 展开更多
关键词 短文本新闻虚假检测 外部知识 注意力机制 语义特征
在线阅读 下载PDF
基于并联残差膨胀卷积网络的短文本实体关系联合抽取
12
作者 曾伟 奚雪峰 崔志明 《现代电子技术》 北大核心 2025年第2期169-178,共10页
关系抽取旨在从文本中提取出实体对之间存在的语义关系,但现有的关系抽取方法均存在关系冗余和重叠的不足,尤其是对于短文本,会因上下文信息不足而出现语义信息不足和噪声大等问题。此外,一般流水线式的关系抽取模型还存在误差传递问题... 关系抽取旨在从文本中提取出实体对之间存在的语义关系,但现有的关系抽取方法均存在关系冗余和重叠的不足,尤其是对于短文本,会因上下文信息不足而出现语义信息不足和噪声大等问题。此外,一般流水线式的关系抽取模型还存在误差传递问题。为此,文中提出一种基于并联残差膨胀卷积网络的短文本实体关系联合抽取方法。该方法利用BERT生成语义特征信息,采用并联残差膨胀卷积网络来捕获语义信息,从而提升上下文信息的捕获能力并缓解噪声。联合抽取框架通过抽取潜在关系来过滤无关关系,然后再抽取实体以预测三元组,从而解决关系冗余和重叠问题,并提高计算效率。实验结果表明,与现有的主流模型相比,所提模型在三个公共数据集NYT、WebNLG和DuIE上的F1值分别为90.9%、91.3%和73.5%,相较于基线模型均有提升,验证了该模型的有效性。 展开更多
关键词 实体关系抽取 短文本 残差膨胀卷积网络 语义特征 联合抽取 BERT编码器
在线阅读 下载PDF
融合BiLSTM与CNN的推特黑灰产分类模型 被引量:2
13
作者 朱恩德 王威 高见 《计算机工程与应用》 北大核心 2025年第1期186-195,共10页
当前推特等国外社交平台,已成为从事网络黑灰产犯罪不可或缺的工具,对推特上黑灰产账号进行发现、检测和分类对于打击网络犯罪、维护社会稳定具有重大意义。现有的推文分类模型双向长短时记忆网络(bi-directional long short-term memor... 当前推特等国外社交平台,已成为从事网络黑灰产犯罪不可或缺的工具,对推特上黑灰产账号进行发现、检测和分类对于打击网络犯罪、维护社会稳定具有重大意义。现有的推文分类模型双向长短时记忆网络(bi-directional long short-term memory,BiLSTM)可以学习推文的上下文信息,却无法学习局部关键信息,卷积神经网络(convolution neural network,CNN)模型可以学习推文的局部关键信息,却无法学习推文的上下文信息。结合BiLSTM与CNN两种模型的优势,提出了BiLSTM-CNN推文分类模型,该模型将推文进行向量化后,输入BiLSTM模型学习推文的上下文信息,再在BiLSTM模型后引入CNN层,进行局部特征的提取,最后使用全连接层将经过池化的特征连接在一起,并应用softmax函数进行四分类。模型在自主构建的中文推特黑灰产推文数据集上进行实验,并使用TextCNN、TextRNN、TextRCNN三种分类模型作为对比实验,实验结果显示,所提的BiLSTM-CNN推文分类模型在对四类推文进行分类的宏准确率为98.32%,明显高于TextCNN、TextRNN和TextRCNN三种模型的准确率。 展开更多
关键词 文本分类 双向长短期记忆网络(BiLSTM) 卷积神经网络(CNN) 黑灰产 推特
在线阅读 下载PDF
融合BTM和Doc2vec的中文短文本自动评分方法
14
作者 宫皓明 万小芬 康春花 《江西师范大学学报(自然科学版)》 北大核心 2025年第2期120-127,共8页
为缓解中文短文本自动评分中的数据稀疏和语义缺失问题,提高中文短文本自动评分的准确性,该文将可处理特征稀疏的BTM和可关联上下文语意特征的Doc2vec相融合,构建了2种新的短文本自动评分模型:BTM-W2V和BTM-D2V.研究结果表明:BTM-D2V和B... 为缓解中文短文本自动评分中的数据稀疏和语义缺失问题,提高中文短文本自动评分的准确性,该文将可处理特征稀疏的BTM和可关联上下文语意特征的Doc2vec相融合,构建了2种新的短文本自动评分模型:BTM-W2V和BTM-D2V.研究结果表明:BTM-D2V和BTM-W2V的效果优于BTM和Doc2vec的效果,而且BTM-D2V的表现尤其突出.该研究为中文短文本主观题自动评分探索了一种新思路. 展开更多
关键词 中文短文本 自动评分 准确性
在线阅读 下载PDF
不同基本单元信息融合的藏文短文本摘要生成
15
作者 夏吾吉 黄鹤鸣 +2 位作者 樊永红 更藏措毛 范玉涛 《计算机工程》 北大核心 2025年第6期174-183,共10页
藏文文本摘要能使用户快速有效地理解藏文文本内容。然而,公开的、多领域的大规模藏文摘要数据集的稀缺,使得藏文文本摘要生成的发展面临挑战;此外,藏文文本摘要生成研究借用中文和英文等以词作为基本单元的文本摘要生成技术构建模型,... 藏文文本摘要能使用户快速有效地理解藏文文本内容。然而,公开的、多领域的大规模藏文摘要数据集的稀缺,使得藏文文本摘要生成的发展面临挑战;此外,藏文文本摘要生成研究借用中文和英文等以词作为基本单元的文本摘要生成技术构建模型,但由于藏文受分词技术的限制,直接以词作为文本摘要生成的基本单元,对性能的影响较大。针对上述问题,构建包含10523条文本-摘要对的多领域藏文短文本摘要数据集TB-SUM,在研究藏文文本构成单元的基础上,提出适用于藏文文本摘要生成的不同基本单元融合方法,并构建融合不同基本单元的藏文文本摘要生成模型Fusion_GloVe_GRU_Atten,利用全局词向量表示(GloVe)模块实现藏文文本向量化后通过双向门控循环单元(Bi-GRU)模块对输入向量进行编码,利用注意力机制获取输入向量的完整语义信息,使解码器更加关注与当前单词相关的编码器输出,同时将GRU作为解码器生成藏文摘要。在数据集TB-SUM和Ti-SUM上的实验结果表明,以音节和词的融合作为模型训练的基本单元,以音节作为测试的基本单元时,Fusion_GloVe_GRU_Atten模型生成短文本摘要效果更好,能得到更高的ROUGE(Recall-Oriented Understudy for Gisting Evaluation)分数。 展开更多
关键词 基本单元 信息融合 词向量 数据集构建 藏文短文本摘要生成
在线阅读 下载PDF
基于社交媒体平台的短文本相似性度量方法及应用综述
16
作者 范星 周晓航 张宁 《计算机科学》 北大核心 2025年第S1期157-164,共8页
短文本相似性度量作为自然语言处理领域中的一项关键任务,随着社交媒体平台的用户活跃度不断攀升,短文本数据已成为互联网信息传播的核心载体。这类数据对于企业在大数据中深入理解消费者情感、精准描绘用户画像具有显著的应用价值。文... 短文本相似性度量作为自然语言处理领域中的一项关键任务,随着社交媒体平台的用户活跃度不断攀升,短文本数据已成为互联网信息传播的核心载体。这类数据对于企业在大数据中深入理解消费者情感、精准描绘用户画像具有显著的应用价值。文中首先对短文本相似性度量方法进行了系统梳理,将其归结为基于字符串的方法、基于词向量的方法以及基于深度学习的方法3类,并深入探讨了不同方法的优势与局限性。其次,聚焦于短文本相似性在企业商业分析中的实际运用,揭示了短文本相似性度量如何助力企业洞察消费者意见、态度以及优化市场营销策略。最后,研究对社交媒体平台短文本相似性度量所面临的挑战进行了全面总结,并对未来的发展前景进行了展望,旨在为相关研究者提供有益的参考和启示。 展开更多
关键词 短文本相似性 社交媒体平台 基于字符串 基于词向量 深度学习 情感分析 用户分析
在线阅读 下载PDF
TI-FastText自动商品分类算法 被引量:3
17
作者 邵欣欣 《计算机科学》 CSCD 北大核心 2022年第S01期206-210,共5页
为了实现根据商品标题信息进行商品自动分类的功能,提出了基于词频-逆文本频率(TF-IDF)的中文Fasttext商品分类方法。该方法首先利用FastText本身的特点,将词库表示成前缀树;然后对n元语法模型n-gram处理后的词典进行TF-IDF筛选,从而在... 为了实现根据商品标题信息进行商品自动分类的功能,提出了基于词频-逆文本频率(TF-IDF)的中文Fasttext商品分类方法。该方法首先利用FastText本身的特点,将词库表示成前缀树;然后对n元语法模型n-gram处理后的词典进行TF-IDF筛选,从而在计算输入词序列向量均值时,偏向高群分度的词条;最后将文本内容以字符顺序进行大小为N的窗口滑动操作,使其更适用于商品标题分类。基于Anaconda平台,对基于FastText的商品分类算法进行实现和优化,经评估,最终的分类器准确率较高,能够满足电商平台对商品分类的需求。 展开更多
关键词 商品分类 中文短文本分类 Fasttext TF-IDF
在线阅读 下载PDF
大学英语短篇小说阅读教学中的问题分析及路径探究
18
作者 孙斐瑾 《教育理论与实践》 北大核心 2025年第6期57-60,共4页
大学英语教学在培养学生英语综合应用能力方面承担着重要使命。当前,大学英语短篇小说阅读教学中存在重字词语篇讲解轻英语语言赏析,重专业知识讲解轻人文素养培养,重表层讲解轻批判性思维能力培养,学生反思机会少,理论付诸实践的能力... 大学英语教学在培养学生英语综合应用能力方面承担着重要使命。当前,大学英语短篇小说阅读教学中存在重字词语篇讲解轻英语语言赏析,重专业知识讲解轻人文素养培养,重表层讲解轻批判性思维能力培养,学生反思机会少,理论付诸实践的能力不足等问题。改进大学英语短篇小学阅读教学的路径是:指导学生赏析英语语言,提升审美意识;引导学生细读文本,培养人文素养;引领学生评判语篇,提升批判性思维能力;帮助学生自我反思,提高教育理论付诸实践的能力。 展开更多
关键词 大学英语短篇小说 阅读教学 审美意识 细读文本 评判语篇 自我反思
在线阅读 下载PDF
基于外部知识查询的视觉问答
19
作者 徐钰涛 汤守国 《计算机科学》 北大核心 2025年第S1期247-254,共8页
为了有效解决现阶段视觉问答(Visual Question Answering,VQA)模型难以处理需要额外知识才能解答的问题,文中提出了一种问题引导的外部知识查询机制(Question-Guided Mechanism for Querying External Knowledge,QGK),旨在集成关键知识... 为了有效解决现阶段视觉问答(Visual Question Answering,VQA)模型难以处理需要额外知识才能解答的问题,文中提出了一种问题引导的外部知识查询机制(Question-Guided Mechanism for Querying External Knowledge,QGK),旨在集成关键知识以丰富问题文本,从而提高VQA模型的准确率。首先,开发了一种问题引导的外部知识查询机制(QGK),以扩充模型内的文本特征表示并增强其处理复杂问题的能力。其中包含了多阶段处理流程,包括关键词提取、查询构造、知识筛选和提炼步骤。其次,还引入了视觉常识特征以验证所提方法的有效性。实验结果表明,所提出的查询机制能够有效提供重要的外部知识,显著提升模型在VQA v2.0数据集上的准确率。当将查询机制单独加入基线模型时,准确率提升至71.05%;而将视觉常识特征与外部知识查询机制相结合时,模型的准确率进一步提高至71.38%。这些结果验证了所提方法对于提升VQA模型性能的显著效果。 展开更多
关键词 视觉问答 外部知识库 查询机制 长短时记忆网络 文本特征
在线阅读 下载PDF
基于交通事件短视频资源的多模态情绪特征分析
20
作者 董镇滔 徐暟敏 +4 位作者 万清颖 刘晓菲 申昊 李书涵 奇格奇 《浙江大学学报(工学版)》 北大核心 2025年第4期661-668,共8页
为了刻画以短视频形式传播的交通事件舆情对公众情绪的导向,通过文本情感分析和多模态生理信号特征提取,构建生理特征图谱.爬取抖音平台136个高赞视频及38805条评论,以所有视频为文档集,单个视频为文档,评论为单词,采用隐狄利克雷分布... 为了刻画以短视频形式传播的交通事件舆情对公众情绪的导向,通过文本情感分析和多模态生理信号特征提取,构建生理特征图谱.爬取抖音平台136个高赞视频及38805条评论,以所有视频为文档集,单个视频为文档,评论为单词,采用隐狄利克雷分布主题模型进行主题挖掘,获得不同主题的评论单词分布和不同视频的主题分布.使用基于朴素贝叶斯的SnowNLP计算评论单词的情感分数,分析不同舆情主题表达的情感倾向.开展神经科学实验,采集脑电、眼动、心电和呼吸等多模态生理信号及情绪评分.统计检验结果表明,不同情感倾向的视频会诱发不同情绪,不同情绪下脑电的相对谱功率、眨眼频率、呼吸标准差和心电极低频功率等多模态生理特征具有特异性,评论文本中蕴含的情感语义会在视频诱发情绪的基础上对公众情绪造成不同方式的影响. 展开更多
关键词 文本信息挖掘 情绪特征 主题模型 短视频舆情 脑电图(EEG)
在线阅读 下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部