The reason for the asymmetry phenomenon of shock/boundary layer interactions(SBLI)in a completely symmetric nozzle with symmetric flow conditions is still an open question.A model for the asymmetry of nozzle flows was...The reason for the asymmetry phenomenon of shock/boundary layer interactions(SBLI)in a completely symmetric nozzle with symmetric flow conditions is still an open question.A model for the asymmetry of nozzle flows was proposed based on the properties of fluid entrainment in the mixing layer and momentum conservation.The asymmetry model is deduced based on the nozzle flow with restricted shock separation,and is still applicable for free shock separation.Flow deflection angle at nozzle exit is deduced from this model.Steady numerical simulations are conducted to model the asymmetry of the SBLIs in a planar convergent-divergent nozzle tested by previous researchers.The obtained values of deflection angle based on the numerical results of forced symmetric nozzle flows can judge the asymmetry of flows in a nozzle at some operations.It shows that the entrainment of shear layer on the separation induced by SBLTs is one of the reasons for the asymmetry in the confined SBLIs.展开更多
A novel third-order optimized symmetric weighted essentially non-oscillatory(WENO-OS3)scheme is used to simulate the hypersonic shock wave/boundary layer interactions.Firstly,the scheme is presented with the achieveme...A novel third-order optimized symmetric weighted essentially non-oscillatory(WENO-OS3)scheme is used to simulate the hypersonic shock wave/boundary layer interactions.Firstly,the scheme is presented with the achievement of low dissipation in smooth region and robust shock-capturing capabilities in discontinuities.The Maxwell slip boundary conditions are employed to consider the rarefied effect near the surface.Secondly,several validating tests are given to show the good resolution of the WENO-OS3 scheme and the feasibility of the Maxwell slip boundary conditions.Finally,hypersonic flows around the hollow cylinder truncated flare(HCTF)and the25°/55°sharp double cone are studied.Discussions are made on the characteristics of the hypersonic shock wave/boundary layer interactions with and without the consideration of the slip effect.The results indicate that the scheme has a good capability in predicting heat transfer with a high resolution for describing fluid structures.With the slip boundary conditions,the separation region at the corner is smaller and the prediction is more accurate than that with no-slip boundary conditions.展开更多
Gao's viscous/in-viscid interacting shear flows (ISF) theory, proposed by professor Gao Zhi in Institute of Mechanics, China Academy of Science, and its inferences and their applications in computational fluid dyna...Gao's viscous/in-viscid interacting shear flows (ISF) theory, proposed by professor Gao Zhi in Institute of Mechanics, China Academy of Science, and its inferences and their applications in computational fluid dynamics (CFD) are reviewed and some subjects worthy to be studied are pro- posed in this paper. The flow-field and motion law of ISF, mathematics definition of strong viscous shear layer flow in ISF, ISF equations, wall-surface compatibility criteria (Gao's criteria ), space scale variety law of strong viscous shear layer reveals flow mechanism and local space small scale triggered by strong interaction that cause some abnormal severe local pneumatic heating phenomenon in hypersonic flow. Gao's ISF theory was used in near wall flow, free ISF flow simulation and design of computing grids, Gao's wall-surface criteria were used to verify calculation reliability and accuracy of near wall flows, ISF theory approximate analytical result of shock waves-boundary layer interac- tion and ISF equations were used to obtain the numerical exact solution of local area flow ( such as stationary point flow). Some new subjects, such as, improving near-wall turbulent models according to the turbulent flow simulation satisfying the wall-criteria and illustrating relation between grid-con- vergence based on the wall criteria and other convergence tactics, are suggested. The necessity of applying Gao's ISF theory and wall criteria is revealed. Difficulties and importance of hypersonic vis- cous/in-viscid interaction phenomenon were also emphasized.展开更多
基金supported by the National Natural Science Foundations of China(Nos.51476076,51776096)
文摘The reason for the asymmetry phenomenon of shock/boundary layer interactions(SBLI)in a completely symmetric nozzle with symmetric flow conditions is still an open question.A model for the asymmetry of nozzle flows was proposed based on the properties of fluid entrainment in the mixing layer and momentum conservation.The asymmetry model is deduced based on the nozzle flow with restricted shock separation,and is still applicable for free shock separation.Flow deflection angle at nozzle exit is deduced from this model.Steady numerical simulations are conducted to model the asymmetry of the SBLIs in a planar convergent-divergent nozzle tested by previous researchers.The obtained values of deflection angle based on the numerical results of forced symmetric nozzle flows can judge the asymmetry of flows in a nozzle at some operations.It shows that the entrainment of shear layer on the separation induced by SBLTs is one of the reasons for the asymmetry in the confined SBLIs.
基金supported by the National Key Basic Research and Development Program (No.2014CB744100)
文摘A novel third-order optimized symmetric weighted essentially non-oscillatory(WENO-OS3)scheme is used to simulate the hypersonic shock wave/boundary layer interactions.Firstly,the scheme is presented with the achievement of low dissipation in smooth region and robust shock-capturing capabilities in discontinuities.The Maxwell slip boundary conditions are employed to consider the rarefied effect near the surface.Secondly,several validating tests are given to show the good resolution of the WENO-OS3 scheme and the feasibility of the Maxwell slip boundary conditions.Finally,hypersonic flows around the hollow cylinder truncated flare(HCTF)and the25°/55°sharp double cone are studied.Discussions are made on the characteristics of the hypersonic shock wave/boundary layer interactions with and without the consideration of the slip effect.The results indicate that the scheme has a good capability in predicting heat transfer with a high resolution for describing fluid structures.With the slip boundary conditions,the separation region at the corner is smaller and the prediction is more accurate than that with no-slip boundary conditions.
基金Supported by the National Natural Science Foundation(10702009)
文摘Gao's viscous/in-viscid interacting shear flows (ISF) theory, proposed by professor Gao Zhi in Institute of Mechanics, China Academy of Science, and its inferences and their applications in computational fluid dynamics (CFD) are reviewed and some subjects worthy to be studied are pro- posed in this paper. The flow-field and motion law of ISF, mathematics definition of strong viscous shear layer flow in ISF, ISF equations, wall-surface compatibility criteria (Gao's criteria ), space scale variety law of strong viscous shear layer reveals flow mechanism and local space small scale triggered by strong interaction that cause some abnormal severe local pneumatic heating phenomenon in hypersonic flow. Gao's ISF theory was used in near wall flow, free ISF flow simulation and design of computing grids, Gao's wall-surface criteria were used to verify calculation reliability and accuracy of near wall flows, ISF theory approximate analytical result of shock waves-boundary layer interac- tion and ISF equations were used to obtain the numerical exact solution of local area flow ( such as stationary point flow). Some new subjects, such as, improving near-wall turbulent models according to the turbulent flow simulation satisfying the wall-criteria and illustrating relation between grid-con- vergence based on the wall criteria and other convergence tactics, are suggested. The necessity of applying Gao's ISF theory and wall criteria is revealed. Difficulties and importance of hypersonic vis- cous/in-viscid interaction phenomenon were also emphasized.