期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
Closed-form solution to thin-walled box girders considering effects of shear deformation and shear lag 被引量:18
1
作者 周旺保 蒋丽忠 +1 位作者 刘志杰 刘小洁 《Journal of Central South University》 SCIE EI CAS 2012年第9期2650-2655,共6页
Considering three longitudinal displacement functions and uniform axial displacement functions for shear lag effect and uniform axial deformation of thin-walled box girder with varying depths,a simple and efficient me... Considering three longitudinal displacement functions and uniform axial displacement functions for shear lag effect and uniform axial deformation of thin-walled box girder with varying depths,a simple and efficient method with high precision to analyze the shear lag effect of thin-walled box girders was proposed.The governing differential equations and boundary conditions of the box girder under lateral loading were derived based on the energy-variational method,and closed-form solutions to stress and deflection corresponding to lateral loading were obtained.Analysis and calculations were carried out with respect to a trapezoidal box girder under concentrated loading or uniform loading and a rectangular box girder under concentrated loading.The analytical results were compared with numerical solutions derived according to the high order finite strip element method and the experimental results.The investigation shows that the closed-form solution is in good agreement with the numerical solutions derived according to the high order finite strip method and the experimental results,and has good stability.Because of the shear lag effect,the stress in cross-section centroid is no longer zero,thus it is not reasonable enough to assume that the strain in cross-section centroid is zero without considering uniform axial deformation. 展开更多
关键词 shear lag effect thin-walled box girder energy-variational method shear deformation closed-form solution
在线阅读 下载PDF
Closed-form solution for shear lag effects of steel-concrete composite box beams considering shear deformation and slip 被引量:10
2
作者 周旺保 蒋丽忠 +1 位作者 刘志杰 刘小洁 《Journal of Central South University》 SCIE EI CAS 2012年第10期2976-2982,共7页
Based on the consideration of longitudinal warp caused by shear lag effects on concrete slabs and bottom plates of steel beams,shear deformation of steel beams and interface slip between steel beams and concrete slabs... Based on the consideration of longitudinal warp caused by shear lag effects on concrete slabs and bottom plates of steel beams,shear deformation of steel beams and interface slip between steel beams and concrete slabs,the governing differential equations and boundary conditions of the steel-concrete composite box beams under lateral loading were derived using energy-variational method.The closed-form solutions for stress,deflection and slip of box beams under lateral loading were obtained,and the comparison of the analytical results and the experimental results for steel-concrete composite box beams under concentrated loading or uniform loading verifies the closed-form solution.The investigation of the parameters of load effects on composite box beams shows that:1) Slip stiffness has considerable impact on mid-span deflection and end slip when it is comparatively small;the mid-span deflection and end slip decrease significantly with the increase of slip stiffness,but when the slip stiffness reaches a certain value,its impact on mid-span deflection and end slip decreases to be negligible.2) The shear deformation has certain influence on mid-span deflection,and the larger the load is,the greater the influence is.3) The impact of shear deformation on end slip can be neglected.4) The strain of bottom plate of steel beam decreases with the increase of slip stiffness,while the shear lag effect becomes more significant. 展开更多
关键词 steel-concrete composite box beam shear lag effect shear deformation SLIP closed-form solution
在线阅读 下载PDF
Finite element analysis of functionally graded sandwich plates with porosity via a new hyperbolic shear deformation theory 被引量:2
3
作者 Pham Van Vinh Le Quang Huy 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第3期490-508,共19页
This study focusses on establishing the finite element model based on a new hyperbolic sheareformation theory to investigate the static bending,free vibration,and buckling of the functionally graded sandwich plates wi... This study focusses on establishing the finite element model based on a new hyperbolic sheareformation theory to investigate the static bending,free vibration,and buckling of the functionally graded sandwich plates with porosity.The novel sandwich plate consists of one homogenous ceramic core and two different functionally graded face sheets which can be widely applied in many fields of engineering and defence technology.The discrete governing equations of motion are carried out via Hamilton’s principle and finite element method.The computation program is coded in MATLAB software and used to study the mechanical behavior of the functionally graded sandwich plate with porosity.The present finite element algorithm can be employed to study the plates with arbitrary shape and boundary conditions.The obtained results are compared with available results in the literature to confirm the reliability of the present algorithm.Also,a comprehensive investigation of the effects of several parameters on the bending,free vibration,and buckling response of functionally graded sandwich plates is presented.The numerical results shows that the distribution of porosity plays significant role on the mechanical behavior of the functionally graded sandwich plates。 展开更多
关键词 Functionally graded sandwich plates Porous plates Hyperbolic shear deformation theory Bending analysis Free vibration analysis Buckling analysis
在线阅读 下载PDF
Bending and stress analysis of polymeric composite plates reinforced with functionally graded graphene platelets based on sinusoidal shear-deformation plate theory
4
作者 Mohammad Arefi Ali Tabatabaeian Masoud Mohammadi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第1期64-74,共11页
The bending and stress analysis of a functionally graded polymer composite plate reinforced with graphene platelets are studied in this paper.The governing equations are derived by using principle of virtual work for ... The bending and stress analysis of a functionally graded polymer composite plate reinforced with graphene platelets are studied in this paper.The governing equations are derived by using principle of virtual work for a plate which is rested on Pasternak’s foundation.Sinusoidal shear deformation theory is used to describe displacement field.Four different distribution patterns are employed in our analysis.The analytical solution is presented for a functionally graded plate to investigate the influence of important parameters.The numerical results are presented to show the deflection and stress results of the problem for four employed patterns in terms of geometric parameters such as number of layers,weight fraction and two parameters of Pasternak’s foundation. 展开更多
关键词 Reinforced composite plate Graphene platelet Sinusoidal shear deformation theory Pasternak’s foundation Stress and deformation analysis
在线阅读 下载PDF
Mechanical stress and deformation analyses of pressurized cylindrical shells based on a higher-order modeling
5
作者 S.Mannani L.Collini M.Arefi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第2期24-33,共10页
In this research,mechanical stress,static strain and deformation analyses of a cylindrical pressure vessel subjected to mechanical loads are presented.The kinematic relations are developed based on higherorder sinusoi... In this research,mechanical stress,static strain and deformation analyses of a cylindrical pressure vessel subjected to mechanical loads are presented.The kinematic relations are developed based on higherorder sinusoidal shear deformation theory.Thickness stretching formulation is accounted for more accurate analysis.The total transverse deflection is divided into bending,shear and thickness stretching parts in which the third term is responsible for change of deflection along the thickness direction.The axisymmetric formulations are derived through principle of virtual work.A parametric study is presented to investigate variation of stress and strain components along the thickness and longitudinal directions.To explore effect of thickness stretching model on the static results,a comparison between the present results with the available results of literature is presented.As an important output,effect of micro-scale parameter is studied on the static stress and strain distribution. 展开更多
关键词 Principle of virtual work Thickness-stretched and shear deformable model Stress and strain analyses Cylindrical pressure vessel
在线阅读 下载PDF
Analysis of free vibration characteristic of steel-concrete composite box-girder considering shear lag and slip 被引量:9
6
作者 周旺保 蒋丽忠 余志武 《Journal of Central South University》 SCIE EI CAS 2013年第9期2570-2577,共8页
Based on Hamilton principle,the governing differential equations and the corresponding boundary conditions of steel-concrete composite box girder with consideration of the shear lag effect meeting self equilibrated st... Based on Hamilton principle,the governing differential equations and the corresponding boundary conditions of steel-concrete composite box girder with consideration of the shear lag effect meeting self equilibrated stress,shear deformation,slip,as well as rotational inertia were induced.Therefore,natural frequency equations were obtained for the boundary types,such as simple support,cantilever,continuous girder and fixed support at two ends.The ANSYS finite element solutions were compared with the analytical solutions by calculation examples and the validity of the proposed approach was verified,which also shows the correctness of longitudinal warping displacement functions.Some meaningful conclusions for engineering design were obtained.The decrease extent of each order natural frequency of the steel-concrete composite box-girder is great under action of the shear lag effect.The shear-lag effect of steel-concrete composite box girder increases when frequency order rises,and increases while span-width ratio decreases.The proposed approach provides theoretical basis for further research of free vibration characteristics of steel-concrete composite box-girder. 展开更多
关键词 steel-concrete composite box-girder shear lag effect shear deformation SLIP free vibration
在线阅读 下载PDF
Influence of mortar gap on natural vibration frequencies of high-speed railway track-bridge system 被引量:4
7
作者 LIU Shao-hui JIANG Li-zhong +1 位作者 ZHOU Wang-bao FENG Yu-lin 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第8期2807-2819,共13页
Based on Hamilton’s principle, the differential equations of free vibration of track-bridge systems with mortar gap are derived. Hence, a method for calculating the natural frequencies of track-bridge systems is prop... Based on Hamilton’s principle, the differential equations of free vibration of track-bridge systems with mortar gap are derived. Hence, a method for calculating the natural frequencies of track-bridge systems is proposed. The influence of the flexural stiffness of the track-bridge system, the vertical and longitudinal stiffness of the mortar layer,gap position and gap length on the natural frequencies of a track-bridge system is discussed. The results show that the natural frequencies of the track-bridge system are more sensitive to the change of the flexural stiffness of the bridge layer. The change of the longitudinal stiffness of the mortar layer and gap position has no obvious effect on the trackbridge system’s natural frequencies, while the interlayer vertical stiffness has a larger impact. The gap length has a more significant effect on the 4th-5th order natural frequencies of the track-bridge system. The range of the natural frequencies that are affected by the gap widens as the gap length increases. 展开更多
关键词 shear deformation track-bridge system mortar gap vibration frequencies
在线阅读 下载PDF
Buckling analysis of shear deformable composite conical shells reinforced by CNTs subjected to combined loading on the two-parameter elastic foundation 被引量:3
8
作者 A.H.Sofiyev N.Kuruoglu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第2期205-218,共14页
The main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic found... The main objective of this study is to investigate the buckling analysis of CCSs reinforced by CNTs subjected to combined loading of hydrostatic pressure and axial compression resting on the twoparameter elastic foundation(T-P-EF).It is one of the first attempts to derive the governing equations of the CCSs reinforced with CNTs,based on a generalized first-order shear deformation shell theory(FSDST)which includes shell-foundation interaction.By adopting the extended mixing rule,the effective material properties of CCSs reinforced by CNTs with linear distributions are approximated by introducing some efficiency parameters.Three carbon nanotube distribution in the matrix,i.e.uniform distribution(U)and V and X-types linear distribution are taken into account.The stability equations are solved by using the Galerkin procedure to determine the combined buckling loads(CBLs)of the structure selected here.The numerical illustrations cover CBLs characteristics of CCSs reinforced by CNTs in the presence of the T-P-EF.Finally,a parametric study is carried out to study the influences of the foundation parameters,the volume fraction of carbon nanotubes and the types of reinforcement on the CBLs. 展开更多
关键词 NANOCOMPOSITES CNTS Composite conical shells Two-parameter elastic foundations Combined buckling loads Shear deformation shell theories
在线阅读 下载PDF
On vibration analysis of functionally graded carbon nanotube reinforced magneto-electro-elastic plates with different electro-magnetic conditions using higher order finite element methods 被引量:3
9
作者 M.Vinyas D.Harursampath S.C.Kattimani 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第1期287-303,共17页
This article deals with evaluating the frequency response of functionally graded carbon nanotube reinforced magneto-electro-elastic(FG-CNTMEE)plates subjected to open and closed electro-magnetic circuit conditions.In ... This article deals with evaluating the frequency response of functionally graded carbon nanotube reinforced magneto-electro-elastic(FG-CNTMEE)plates subjected to open and closed electro-magnetic circuit conditions.In this regard finite element formulation has been derived.The plate kinematics adjudged via higher order shear deformation theory(HSDT)is considered for evaluation.The equations of motion are obtained with the help of Hamilton’s principle and solved using condensation technique.It is found that the convergence and accuracy of the present FE formulation is very good to address the vibration problem of FG-CNTMEE plate.For the first time,frequency response analysis of FG-CNTMEE plates considering the effect of various circuit conditions associated with parameters such as CNT distributions,volume fraction,skew angle,aspect ratio,length-to-thickness ratio and coupling fields has been carried out.The results of this article can serve as benchmark for future development and analysis of smart structures. 展开更多
关键词 Carbon nanotube MAGNETO-ELECTRO-ELASTIC Higher order shear deformation theory Coupled frequency Electro-magnetic conditions
在线阅读 下载PDF
Size dependent free vibration analysis of functionally graded piezoelectric micro/nano shell based on modified couple stress theory with considering thickness stretching effect 被引量:5
10
作者 Maryam Lori Dehsaraji Mohammad Arefi Abbas Loghman 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第1期119-134,共16页
Higher-order shear and normal deformation theory is used in this paper to account thickness stretching effect for free vibration analysis of the cylindrical micro/nano shell subjected to an applied voltage and uniform... Higher-order shear and normal deformation theory is used in this paper to account thickness stretching effect for free vibration analysis of the cylindrical micro/nano shell subjected to an applied voltage and uniform temperature rising.Size dependency is included in governing equations based on the modified couple stress theory.Hamilton’s principle is used to derive governing equations of the cylindrical micro/nano shell.Solution procedure is developed using Navier technique for simply-supported boundary conditions.The numerical results are presented to investigate the effect of significant parameters such as some dimensionless geometric parameters,material properties,applied voltages and temperature rising on the free vibration responses. 展开更多
关键词 Thickness stretching effect Shear and normal deformation theory Vibration analysis Length scale parameter Modified couple stress theory
在线阅读 下载PDF
A new 3-D element formulation on displacement of steel-concrete composite box beam 被引量:2
11
作者 周凌宇 余志武 贺桂超 《Journal of Central South University》 SCIE EI CAS 2013年第5期1354-1360,共7页
Slip of a composite box beam may reduce its stiffness, enlarge its deformation and affect its performance. In this work, the governing differential equations and boundary conditions of composite box beams were establi... Slip of a composite box beam may reduce its stiffness, enlarge its deformation and affect its performance. In this work, the governing differential equations and boundary conditions of composite box beams were established. Analytic solutions of combined differential equations were also established. Partial degree of freedom was adopted to establish a new FEA element of three-dimensional beam, taking into account the slip effect. Slip and its first-order derivative were introduced into the nodes of composite box beams as generalized degree of freedom. Stiffness matrix and load array of beam elements were established. A three-dimensional nonlinear calculation program was worked out. The results show that the element is reliable and easy to divide and is suitable for special nonlinear analysis of large-span composite box beams. 展开更多
关键词 steel-concrete composite box beam shear deformation slip effect variational method finite beam element method
在线阅读 下载PDF
A higher order coupled frequency characteristics study of smart magneto-electro-elastic composite plates with cut-outs using finite element methods 被引量:1
12
作者 M.Vinyas D.Harursampath T.Nguyen Thoi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第1期100-118,共19页
This article deals with investigating the effect of cut-outs on the natural frequencies of magneto-electroelastic(MEE)plates incorporating finite element methods based on higher order shear deformation theory(HSDT).In... This article deals with investigating the effect of cut-outs on the natural frequencies of magneto-electroelastic(MEE)plates incorporating finite element methods based on higher order shear deformation theory(HSDT).In order to consider the influence of cut-out,the energy of the cut-out domain is subtracted from the total energy of the entire plate.The governing equations of motions are derived through incorporating Hamilton’s principle and the solution is obtained using condensation technique.The proposed numerical formulation is verified with the results of previously published literature as well as the numerical software.In addition,this research focuses on evaluating the effect of geometrical skewness and boundary conditions on the frequency response.The influence of cut-outs on the degree of coupling between magnetic,electric and elastic fields is also investigated. 展开更多
关键词 CUT-OUT MAGNETO-ELECTRO-ELASTIC Natural frequency Higher order shear deformation COUPLING
在线阅读 下载PDF
Exact solution for thermal vibration of multi-directional functionally graded porous plates submerged in fluid medium 被引量:1
13
作者 Quoc-Hoa Pham Van Ke Tran Phu-Cuong Nguyen 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期77-99,共23页
An analytical method for analyzing the thermal vibration of multi-directional functionally graded porous rectangular plates in fluid media with novel porosity patterns is developed in this study.Mechanical properties ... An analytical method for analyzing the thermal vibration of multi-directional functionally graded porous rectangular plates in fluid media with novel porosity patterns is developed in this study.Mechanical properties of MFG porous plates change according to the length,width,and thickness directions for various materials and the porosity distribution which can be widely applied in many fields of engineering and defence technology.Especially,new porous rules that depend on spatial coordinates and grading indexes are proposed in the present work.Applying Hamilton's principle and the refined higher-order shear deformation plate theory,the governing equation of motion of an MFG porous rectangular plate in a fluid medium(the fluid-plate system)is obtained.The fluid velocity potential is derived from the boundary conditions of the fluid-plate system and is used to compute the extra mass.The GalerkinVlasov solution is used to solve and give natural frequencies of MFG porous plates with various boundary conditions in a fluid medium.The validity and reliability of the suggested method are confirmed by comparing numerical results of the present work with those from available works in the literature.The effects of different parameters on the thermal vibration response of MFG porous rectangular plates are studied in detail.These findings demonstrate that the behavior of the structure within a liquid medium differs significantly from that within a vacuum medium.Thereby,they offer appropriate operational approaches for the structure when employed in various mediums. 展开更多
关键词 Plate-fluid contact Galerkin Vlasov's method Multi-directional functionally graded plate Novel porosity Thermal vibration Refined higher-order shear deformation theory
在线阅读 下载PDF
On the higher-order thermal vibrations of FG saturated porous cylindrical micro-shells integrated with nanocomposite skins in viscoelastic medium
14
作者 Zeinab Soleimani-Javid Ehsan Arshid +1 位作者 Saeed Amir Mahdi Bodaghi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第8期1416-1434,共19页
Since the multi-layered structures are widely used nowadays, and due to interesting applications of cylindrical shells, this study is dedicated to analyzing free vibrational behaviors of functionally graded saturated ... Since the multi-layered structures are widely used nowadays, and due to interesting applications of cylindrical shells, this study is dedicated to analyzing free vibrational behaviors of functionally graded saturated porous micro cylindrical shells with two nanocomposite skins. Based on Biot's assumptions, constitutive relations for the core are presented and effective properties of the skins are determined via the rule of mixture. A sinusoidal theory is used to capture the shear deformation effects, and to account for the scale effects, the modified couple stress theory is employed which suggests a material length-scale parameter for predicting the results in small-dimension. With the aid of extended form of Hamilton's principle for dynamic systems, differential equations of motion are extracted. Fourier series functions are used to obtain natural frequencies and after validating them, a set of parametric studies are carried out. The results show the significant effects of porosity and Skempton coefficient, pores placement patterns, CNTs addition and distribution patterns, temperature variations, material length-scale parameter and viscoelastic medium on the natural frequencies of the microstructure. The outcomes of this work could be used to design and manufacture more reliable micro cylindrical structures in thermo-dynamical environments. 展开更多
关键词 Vibration analysis Cylindrical shells Saturate porous materials Nanocomposite materials Carbon nanotubes Sinusoidal shear deformation theory Viscoelastic medium
在线阅读 下载PDF
Static and dynamic stability responses of multilayer functionally graded carbon nanotubes reinforced composite nanoplates via quasi 3D nonlocal strain gradient theory
15
作者 Ahmed Amine Daikh Mohamed Sid Ahmed Houari +2 位作者 Mohamed Ouejdi Belarbi Salwa A.Mohamed Mohamed A.Eltaher 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第10期1778-1809,共32页
This manuscript presents the comprehensive study of thickness stretching effects on the free vibration,static stability and bending of multilayer functionally graded(FG)carbon nanotubes reinforced composite(CNTRC)nano... This manuscript presents the comprehensive study of thickness stretching effects on the free vibration,static stability and bending of multilayer functionally graded(FG)carbon nanotubes reinforced composite(CNTRC)nanoplates.The nanoscale and microstructure influences are considered through a modified nonlocal strain gradient continuum model.Based on power-law functions,four different patterns of CNTs distribution are considered in this analysis,a uniform distribution UD,FG-V CNTRC,FG-X CNTRC,and FG-O CNTRC.A 3D kinematic shear deformation theory is proposed to include the stretching influence,which is neglected in classical theories.Hamilton's principle is applied to derive the governing equations of motion and associated boundary conditions.Analytical solutions are developed based on Galerkin method to solve the governing equilibrium equations based on the generalized higher-order shear deformation theory and the nonlocal strain gradient theory and get the static bending,buckling loads,and natural frequencies of nanoplates.Verification with previous works is presented.A detailed parametric analysis is carried out to highlight the impact of thickness stretching,length scale parameter(nonlocal),material scale parameter(gradient),CNTs distribution pattern,geometry of the plate,various boundary conditions and the total number of layers on the stresses,deformation,critical buckling loads and vibration frequencies.Many new results are also reported in the current study,which will serve as a benchmark for future research. 展开更多
关键词 3D shear deformation theory Free vibration Buckling Bending Galerkin method Functionally graded nanotube Nonlocal strain gradient theory
在线阅读 下载PDF
Higher-order electroelastic modelling of piezoelectric cylindrical nanoshell on elastic matrix
16
作者 Xiao-ping Huang Peng-fei Hu Mohammad Arefi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第5期781-796,共16页
This paper develops electro-elastic relations of functionally graded cylindrical nanoshell integrated with intelligent layers subjected to multi-physics loads resting on elastic foundation.The piezoelectric layers are... This paper develops electro-elastic relations of functionally graded cylindrical nanoshell integrated with intelligent layers subjected to multi-physics loads resting on elastic foundation.The piezoelectric layers are actuated with external applied voltage.The nanocore is assumed in-homogeneous in which the material properties are changed continuously and gradually along radial direction.Third-order shear deformation theory is used for the description of kinematic relations and electric potential distribution is assumed as combination of a linear function along thickness direction to show applied voltage and a longitudinal distribution.Electro-elastic size-dependent constitutive relations are developed based on nonlocal elasticity theory and generalized Hooke’s law.The principle of virtual work is used to derive governing equations in terms of four functions along the axial and the radial directions and longitudinal electric potential function.The numerical results including radial and longitudinal displacements are presented in terms of basic input parameters of the integrated cylindrical nanoshell such as initial electric potential,small scale parameter,length to radius ratio and two parameters of foundation.It is concluded that both displacements are increased with an increase in small-scale parameter and a decrease in applied electric potential. 展开更多
关键词 Higher-order shear deformation theory Electro-elastic bending Functionally graded materials Size-dependent analysis Nonlocal parameter Cylindrical nano shell
在线阅读 下载PDF
Effect of different geometrical non-uniformities on nonlinear vibration of porous functionally graded skew plates: A finite element study
17
作者 H.S.Naveen Kumar Subhaschandra Kattimani 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第6期918-936,共19页
This article presents the investigation of nonlinear vibration analysis of tapered porous functionally graded skew(TPFGS)plate considering the effects of geometrical non-uniformities to optimize the thickness in the s... This article presents the investigation of nonlinear vibration analysis of tapered porous functionally graded skew(TPFGS)plate considering the effects of geometrical non-uniformities to optimize the thickness in the structural design.The TPFGS plate is analyzed considering linearly,bi-linearly,and exponentially varying thicknesses.The plate’s effective material properties are tailor-made using a modified power-law distribution in which gradation varies along the thickness direction of the TPFGS plate.Incorporating the non-linear finite element formulation to develop the kinematic equation’s displacement model for the TPFGS plate is based on the first-order shear deformation theory(FSDT)in conjunction with von Karman’s nonlinearity.The nonlinear governing equations are established by Hamilton’s principle.The direct iterative method is adopted to solve the nonlinear mathematical relations to obtain the nonlinear frequencies.The influence of the porosity distributions and porosity parameter indices on the nonlinear frequency responses of the TPFGS plate for different skew angles and variable thicknesses are studied for various geometrical parameters.The influence of taper ratio,variable thickness,skewness,porosity distributions,gradation,and boundary conditions on the plate’s nonlinear vibration is demonstrated.The nonlinear frequency analysis reveals that the geometrical nonuniformities and porosities significantly influence the porous functionally graded plates with varying thickness than the uniform thickness.Besides,exponentially and linearly variable thicknesses can be considered for the thickness optimizations of TPFGS plates in the structural design. 展开更多
关键词 Functionally graded material Shear deformation theory Porosity distributions Variable thickness Geometrical skewness Nonlinear free vibration
在线阅读 下载PDF
Bending results of graphene origami reinforced doubly curved shell
18
作者 Nan Yang Yunhe Zou Mohammad Arefi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第5期198-210,共13页
The present work investigates higher order stress,strain and deformation analyses of a shear deformable doubly curved shell manufactures by a Copper(Cu)core reinforced with graphene origami auxetic metamaterial subjec... The present work investigates higher order stress,strain and deformation analyses of a shear deformable doubly curved shell manufactures by a Copper(Cu)core reinforced with graphene origami auxetic metamaterial subjected to mechanical and thermal loads.The effective material properties of the graphene origami auxetic reinforced Cu matrix are developed using micromechanical models cooperate both material properties of graphene and Cu in terms of temperature,volume fraction and folding degree.The principle of virtual work is used to derive governing equations with accounting thermal loading.The numerical results are analytically obtained using Navier's technique to investigate impact of significant parameters such as thermal loading,graphene amount,folding degree and directional coordinate on the stress,strain and deformation responses of the structure.The graphene origami materials may be used in aerospace vehicles and structures and defence technology because of their low weight and high stiffness.A verification study is presented for approving the formulation,solution methodology and numerical results. 展开更多
关键词 Graphene origami Copper matrix Doubly curved Shear deformable Auxetic metamaterial
在线阅读 下载PDF
Vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers under blast load
19
作者 Quoc-Hoa Pham Van Ke Tran Trung Thanh Tran 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第6期148-163,共16页
In this article,vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers subjected to blast load are studied.Higher-order ES-MITC3 element based on higher-order... In this article,vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers subjected to blast load are studied.Higher-order ES-MITC3 element based on higher-order shear deformation theory(HSDT)to achieve the governing equations.The sandwich plates with the ultra-light feature of the auxetic honeycomb core layer(negative Poisson’s ratio)and reinforced by two laminated three-phase skin layers.The obtained results in our work are compared with other previously published to confirm accuracy and reliability.In addition,the effects of parameters such as geometrical and material parameters on the vibration characteristics of sandwich plates with an auxetic honeycomb core and laminated three-phase skin layers are fully investigated. 展开更多
关键词 Laminated three-phase Sandwich plate Auxetic honeycomb ES-MITC3 element High-order shear deformation theory
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部