Project construction and development are an impor-tant part of future army designs.In today’s world,intelligent war-fare and joint operations have become the dominant develop-ments in warfare,so the construction and ...Project construction and development are an impor-tant part of future army designs.In today’s world,intelligent war-fare and joint operations have become the dominant develop-ments in warfare,so the construction and development of the army need top-down,top-level design,and comprehensive plan-ning.The traditional project development model is no longer suf-ficient to meet the army’s complex capability requirements.Projects in various fields need to be developed and coordinated to form a joint force and improve the army’s combat effective-ness.At the same time,when a program consists of large-scale project data,the effectiveness of the traditional,precise mathe-matical planning method is greatly reduced because it is time-consuming,costly,and impractical.To solve above problems,this paper proposes a multi-stage program optimization model based on a heterogeneous network and hybrid genetic algo-rithm and verifies the effectiveness and feasibility of the model and algorithm through an example.The results show that the hybrid algorithm proposed in this paper is better than the exist-ing meta-heuristic algorithm.展开更多
To solve the problem that the existing situation awareness research focuses on multi-sensor data fusion,but the expert knowledge is not fully utilized,a heterogeneous informa-tion fusion recognition method based on be...To solve the problem that the existing situation awareness research focuses on multi-sensor data fusion,but the expert knowledge is not fully utilized,a heterogeneous informa-tion fusion recognition method based on belief rule structure is proposed.By defining the continuous probabilistic hesitation fuzzy linguistic term sets(CPHFLTS)and establishing CPHFLTS distance measure,the belief rule base of the relationship between feature space and category space is constructed through information integration,and the evidence reasoning of the input samples is carried out.The experimental results show that the proposed method can make full use of sensor data and expert knowledge for recognition.Compared with the other methods,the proposed method has a higher correct recognition rate under different noise levels.展开更多
Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection per-formance.This paper proposes a method to handle false alarms in heterogeneous change detection.A light...Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection per-formance.This paper proposes a method to handle false alarms in heterogeneous change detection.A lightweight network of two channels is bulit based on the combination of convolutional neural network(CNN)and graph convolutional network(GCN).CNNs learn feature difference maps of multitemporal images,and attention modules adaptively fuse CNN-based and graph-based features for different scales.GCNs with a new kernel filter adaptively distinguish between nodes with the same and those with different labels,generating change maps.Experimental evaluation on two datasets validates the efficacy of the pro-posed method in addressing false alarms.展开更多
Heterogeneous federated learning(HtFL)has gained significant attention due to its ability to accommodate diverse models and data from distributed combat units.The prototype-based HtFL methods were proposed to reduce t...Heterogeneous federated learning(HtFL)has gained significant attention due to its ability to accommodate diverse models and data from distributed combat units.The prototype-based HtFL methods were proposed to reduce the high communication cost of transmitting model parameters.These methods allow for the sharing of only class representatives between heterogeneous clients while maintaining privacy.However,existing prototype learning approaches fail to take the data distribution of clients into consideration,which results in suboptimal global prototype learning and insufficient client model personalization capabilities.To address these issues,we propose a fair trainable prototype federated learning(FedFTP)algorithm,which employs a fair sampling training prototype(FSTP)mechanism and a hyperbolic space constraints(HSC)mechanism to enhance the fairness and effectiveness of prototype learning on the server in heterogeneous environments.Furthermore,a local prototype stable update(LPSU)mechanism is proposed as a means of maintaining personalization while promoting global consistency,based on contrastive learning.Comprehensive experimental results demonstrate that FedFTP achieves state-of-the-art performance in HtFL scenarios.展开更多
Heterogeneous computing is one effective method of high performance computing with many advantages. Task scheduling is a critical issue in heterogeneous environments as well as in homogeneous environments. A number of...Heterogeneous computing is one effective method of high performance computing with many advantages. Task scheduling is a critical issue in heterogeneous environments as well as in homogeneous environments. A number of task scheduling algorithms for homogeneous environments have been proposed, whereas, a few for heterogeneous environments can be found in the literature. A novel task scheduling algorithm for heterogeneous environments, called the heterogeneous critical task (HCT) scheduling algorithm is presented. By means of the directed acyclic graph and the gantt graph, the HCT algorithm defines the critical task and the idle time slot. After determining the critical tasks of a given task, the HCT algorithm tentatively duplicates the critical tasks onto the processor that has the given task in the idle time slot, to reduce the start time of the given task. To compare the performance of the HCT algorithm with several recently proposed algorithms, a large set of randomly generated applications and the Gaussian elimination application are randomly generated. The experimental result has shown that the HCT algorithm outperforms the other algorithm.展开更多
The application of multiple UAVs in complicated tasks has been widely explored in recent years.Due to the advantages of flexibility,cheapness and consistence,the performance of heterogeneous multi-UAVs with proper coo...The application of multiple UAVs in complicated tasks has been widely explored in recent years.Due to the advantages of flexibility,cheapness and consistence,the performance of heterogeneous multi-UAVs with proper cooperative task allocation is superior to over the single UAV.Accordingly,several constraints should be satisfied to realize the efficient cooperation,such as special time-window,variant equipment,specified execution sequence.Hence,a proper task allocation in UAVs is the crucial point for the final success.The task allocation problem of the heterogeneous UAVs can be formulated as a multi-objective optimization problem coupled with the UAV dynamics.To this end,a multi-layer encoding strategy and a constraint scheduling method are designed to handle the critical logical and physical constraints.In addition,four optimization objectives:completion time,target reward,UAV damage,and total range,are introduced to evaluate various allocation plans.Subsequently,to efficiently solve the multi-objective optimization problem,an improved multi-objective quantum-behaved particle swarm optimization(IMOQPSO)algorithm is proposed.During this algorithm,a modified solution evaluation method is designed to guide algorithmic evolution;both the convergence and distribution of particles are considered comprehensively;and boundary solutions which may produce some special allocation plans are preserved.Moreover,adaptive parameter control and mixed update mechanism are also introduced in this algorithm.Finally,both the proposed model and algorithm are verified by simulation experiments.展开更多
A new vertical handoff decision algorithm is proposed to maximize the system benefit in heterogeneous wireless networks which comprise cellular networks and wireless local area networks (WLANs). Firstly the block pr...A new vertical handoff decision algorithm is proposed to maximize the system benefit in heterogeneous wireless networks which comprise cellular networks and wireless local area networks (WLANs). Firstly the block probability, the drop probability and the number of users in the heterogeneous networks are calculated in the channel-guard call admission method, and a function of the system benefit which is based on the new call arrival rate and the handoff call arrival rate is proposed. Then the optimal radius of WLAN is obtained by using simulation annealing (SA) method to maximize the benefit. All the nodes should handoff from cellular network to WLAN if they enter WLAN's scope and handoff from WLAN to cellular network if they leave the scope. Finally, the algorithm in different new call arrival rates and handoff call arrival rates is analyzed and results show that it can achieve good effects.展开更多
In order to verify the validity of finite element numerical simulation method for asphalt mixture, which consists of aggregates, mastic (where mastic is a kind of fine mixture composed of asphalt binder mixed with fi...In order to verify the validity of finite element numerical simulation method for asphalt mixture, which consists of aggregates, mastic (where mastic is a kind of fine mixture composed of asphalt binder mixed with fines and fine aggregates) and air voids, based on three-dimensional (3D) heterogeneous specimen, X-ray computerized tomography (X-ray CT) was used to scan the asphalt specimens to obtain the real internal microstrnctures of asphalt mixture. CT images were reconstructed to build up 3D digital specimen, and the viscoelastic properties of mastic were described with Burgers model The uniaxial creep numerical simulations of three different levels of aggregate gradation were conducted. The simulation results agree well with the experimental results. The numerical simulation of asphalt mixture incorporated with real 3D microstructure based on finite element method is a promising application to conduct research of asphalt concrete. Additionally, this method can increase the mechanistic understanding of global viscoelastic properties of asphalt mixtures by linking the real 3D microstructure.展开更多
Heterogeneous Fenton-like process using fly ash as a catalyst was studied to degrade n-butyl xanthate form aqueous solution. The different reaction parameters on the degradation efficiency of the process were investig...Heterogeneous Fenton-like process using fly ash as a catalyst was studied to degrade n-butyl xanthate form aqueous solution. The different reaction parameters on the degradation efficiency of the process were investigated. The fly ash/H2O2 catalyst possesses a high oxidation activity for n-butyl xanthate degradation in aqueous solution. It is found that both the dosage of catalyst and initial solution pH significantly affect the n-butyl xanthate conversion efficient. The results indicate that by using 1.176 mmol/L H2O2 and 1.0 g/L fly ash catalyst with mass fraction of 4.14% Fe(III) oxide at pH 3.0, almost 96.90% n-butyl xanthate conversion and over 96.66% COD removal can be achieved within 120 min with heterogeneous catalysis by fly ash. CS2 as an intermediate of n-butyl xanthate oxidation. Finally, it is demonstrated that the fly ash/H2O2 catalytic oxidation process can be an efficient method for the treatment of n-butyl xanthate containing wastewater.展开更多
Heterogeneous wireless access technologies will coexist in next generation wireless networks.These technologies form integrated networks,and these networks support multiple services with high quality level.Various acc...Heterogeneous wireless access technologies will coexist in next generation wireless networks.These technologies form integrated networks,and these networks support multiple services with high quality level.Various access technologies allow users to select the best available access network to meet the requirements of each type of communication service.Being always best connected anytime and anywhere is a major concern in a heterogeneous wireless networks environment.Always best connected enables network selection mechanisms to keep mobile users always connected to the best network.We present an overview of the network selection and prediction problems and challenges.In addition,we discuss a comprehensive classification of related theoretic approaches,and also study the integration between these methods,finding the best solution of network selection and prediction problems.The optimal solution can fulfill the requirements of the next generation wireless networks.展开更多
The present article deals with thermally stratified stagnation-point flow saturated in porous medium on surface of variable thickness along with more convincing and reliable surface condition termed as melting heat tr...The present article deals with thermally stratified stagnation-point flow saturated in porous medium on surface of variable thickness along with more convincing and reliable surface condition termed as melting heat transfer.Homogeneous–heterogeneous reaction and radiative effects have been further taken into account to reconnoiterproperties of heat transfer.Melting heat transfer and phenomenon of homogeneous–heterogeneous reaction have engrossed widespread utilization in purification of metals,welding process,electroslag melting,biochemical systems,catalysis and several industrial developments.Suitable transformations are utilized to attain a scheme of ordinary differential equations possessing exceedingly nonlinear nature.Homotopic process is employed to develop convergent solutions of the resulting problem.Discussion regarding velocity,thermal field and concentration distribution for several involved parameters is pivotal part.Graphical behaviors of skin friction coefficient and Nusselt number are also portrayed.Concentration of the reactants is found to depreciate as a result of strength of both heterogeneous and homogeneous reaction parameters.With existence of melting phenomenon,declining attitude of fluid temperature is observed for higher radiation parameter.展开更多
Particle-in-cell (PIC) method has got much benefits from GPU-accelerated heterogeneous systems.However,the performance of PIC is constrained by the interpolation operations in the weighting process on GPU (graphic pro...Particle-in-cell (PIC) method has got much benefits from GPU-accelerated heterogeneous systems.However,the performance of PIC is constrained by the interpolation operations in the weighting process on GPU (graphic processing unit).Aiming at this problem,a fast weighting method for PIC simulation on GPU-accelerated systems was proposed to avoid the atomic memory operations during the weighting process.The method was implemented by taking advantage of GPU's thread synchronization mechanism and dividing the problem space properly.Moreover,software managed shared memory on the GPU was employed to buffer the intermediate data.The experimental results show that the method achieves speedups up to 3.5 times compared to previous works,and runs 20.08 times faster on one NVIDIA Tesla M2090 GPU compared to a single core of Intel Xeon X5670 CPU.展开更多
Peta-scale high-perfomlance computing systems are increasingly built with heterogeneous CPU and GPU nodes to achieve higher power efficiency and computation throughput. While providing unprecedented capabilities to co...Peta-scale high-perfomlance computing systems are increasingly built with heterogeneous CPU and GPU nodes to achieve higher power efficiency and computation throughput. While providing unprecedented capabilities to conduct computational experiments of historic significance, these systems are presently difficult to program. The users, who are domain experts rather than computer experts, prefer to use programming models closer to their domains (e.g., physics and biology) rather than MPI and OpenME This has led the development of domain-specific programming that provides domain-specific programming interfaces but abstracts away some performance-critical architecture details. Based on experience in designing large-scale computing systems, a hybrid programming framework for scientific computing on heterogeneous architectures is proposed in this work. Its design philosophy is to provide a collaborative mechanism for domain experts and computer experts so that both domain-specific knowledge and performance-critical architecture details can be adequately exploited. Two real-world scientific applications have been evaluated on TH-IA, a peta-scale CPU-GPU heterogeneous system that is currently the 5th fastest supercomputer in the world. The experimental results show that the proposed framework is well suited for developing large-scale scientific computing applications on peta-scale heterogeneous CPU/GPU systems.展开更多
Abstract: Two-tier heterogeneous networks (HetNets), where the current cellular networks, i.e., macrocells, are overlapped with a large number of randomly distributed femtocells, can potentially bring significant b...Abstract: Two-tier heterogeneous networks (HetNets), where the current cellular networks, i.e., macrocells, are overlapped with a large number of randomly distributed femtocells, can potentially bring significant benefits to spectral utilization and system capacity. The interference management and access control for open and closed femtocells in two-tier HetNets were focused. The contributions consist of two parts. Firstly, in order to reduce the uplink interference caused by MUEs (macrocell user equipments) at closed femtocells, an incentive mechanism to implement interference mitigation was proposed. It encourages femtoeells that work with closed-subscriber-group (CSG) to allow the interfering MUEs access in but only via uplink, which can reduce the interference significantly and also benefit the marco-tier. The interference issue was then studied in open-subscriber-group (OSG) femtocells from the perspective of handover and mobility prediction. Inbound handover provides an alternative solution for open femtocells when interference turns up, while this accompanies with PCI (physical cell identity) confusion during inbound handover. To reduce the PCI confusion, a dynamic PCI allocation scheme was proposed, by which the high handin femtocells have the dedicated PCI while the others share the reuse PCIs. A Markov chain based mobility prediction algorithm was designed to decide whether the femtoeell status is with high handover requests. Numerical analysis reveals that the UL interference is managed well for the CSG femtocell and the PCI confusion issue is mitigated greatly in OSG femtocell compared to the conventional approaches.展开更多
The precursors with NiCO3·2Ni(OH)2·2H2O, Fe2O3·nH2O coated alumina microspheres were prepared by the aqueous heterogeneous precipitation using metal salts, ammonium bicarbonate and α-Al2O3 micropowde...The precursors with NiCO3·2Ni(OH)2·2H2O, Fe2O3·nH2O coated alumina microspheres were prepared by the aqueous heterogeneous precipitation using metal salts, ammonium bicarbonate and α-Al2O3 micropowders as the starting materials. Magnetic metal Ni, α-Fe coated alumina, core-shell structural microspheres were successfully obtained by thermal reduction of the precursors at 700℃ for 2h, respectively. Powders of the precursors and the resultant metal (Ni, α-Fe) coated alumina micropowders were characterized by scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. The results show that optimized precipitation parameters are concentration of alumina micropowders of 15g/L, rate of adding reactants of 5mL/min and pH value of 7.5. And under the optimized conditions, the spherical precursors without aggregations or agglomerations are obtained, then transferred into Ni, α-Fe coated alumina microspheres by thermal reduction. It is possible to adjust metal coating thicknesses and fabricate a multilayer structured metal/ceramics, core-shell microspherical powder materials.展开更多
Surface roughness is one of the main indexes in qua li ty assessment of machined components. Surface generation by material removal pro cess depends on the machining process mechanism. The material removal mechanisms ...Surface roughness is one of the main indexes in qua li ty assessment of machined components. Surface generation by material removal pro cess depends on the machining process mechanism. The material removal mechanisms are different for machining common materials and heterogeneous materials. Machi ned surface profiles of conventional engineering materials are determined by the moving tracks of tool edges on workpiece surface, the roughness mainly depends on the cutting parameters and the geometrical shape of cutting tool. Heterogeneo us materials consist of two or more separate materials, their properties vary fr om one phase to another and change along with measurement direction. When he terogeneous materials are cut, a quantity of machining-conduced imperfections o ccurs in the machined surface, part of the surface profiles do not directly result from the cutting of tool edges but from the imperfections, the surface te xture may confuse or disappears. The imperfections distribute randomly and their shapes are irregular, the spacing of profile peaks and valleys is irregular and un-periodical, therefore, they cannot be distinguished by wavelength. The prof iles of machined surface of heterogeneous materials have dense, narrow and sharp peaks and valleys. The amplitude distribution of profile peak and valley is dis persed and unsymmetrical, and usually the profile has a positive skewness. Ten p oint height of irregularities or root-mean-square deviation of the profile is more appropriate parameter than maximum height or arithmetical mean deviation of the profile for describing the height characteristics of roughness, and statist ical method and random process method are used to describe the irregularity distribution of the profile.展开更多
Decoloration and mineralization of yeast wastewater were investigated by using Ce-Fe/Al2O3 as a heterogeneous photo-Fenton catalyst in fluidized bed reactor in order to solve the problem of yeast wastewater discharge....Decoloration and mineralization of yeast wastewater were investigated by using Ce-Fe/Al2O3 as a heterogeneous photo-Fenton catalyst in fluidized bed reactor in order to solve the problem of yeast wastewater discharge. The experimental results were assessed in terms of total organic carbon(TOC) reduction. The operational and reaction conditions affecting the efficiencies of TOC removal such as initial pH value, H2O2 concentration, catalyst loading and UV power were studied. The results show that TOC is reduced from 347.6 mg/L to 10.8 mg/L, color is changed from 500 units to 0 under the conditions as follows: initial pH value 6. 0, H2O2 concentration of 1. 000 g/L, catalyst loading of 5 g/L, reaction duration of 120 rain and reaction temperature of 30 ℃. The irradiated Ce-Fe/Al2O3 catalyst was complexed with 1,10-phenanthroline and then it was subjected to Fourier transform infrared spectroscopy and diffuse reflectance spectroscopy to confirm the formation of Fe(Ⅱ) in the solid state. Heterogeneous photo-Fenton reaction proves to be effective for the treatment of yeast wastewater.展开更多
This paper proposes an optimal deployment method of heterogeneous multistatic radars to construct arc barrier coverage with location restrictions.This method analyzes and proves the properties of different deployment ...This paper proposes an optimal deployment method of heterogeneous multistatic radars to construct arc barrier coverage with location restrictions.This method analyzes and proves the properties of different deployment patterns in the optimal deployment sequence.Based on these properties and considering location restrictions,it introduces an optimization model of arc barrier coverage and aims to minimize the total deployment cost of heterogeneous multistatic radars.To overcome the non-convexity of the model and the non-analytical nature of the objective function,an algorithm combining integer line programming and the cuckoo search algorithm(CSA)is proposed.The proposed algorithm can determine the number of receivers and transmitters in each optimal deployment squence to minimize the total placement cost.Simulations are conducted in different conditions to verify the effectiveness of the proposed method.展开更多
The removal of the antibiotic compound tetracycline hydrochloride (TC) was investigated by using goethite/H2O2 as a heterogeneous Fenton reagent. Five principle operational parameters, especially solution pH value, we...The removal of the antibiotic compound tetracycline hydrochloride (TC) was investigated by using goethite/H2O2 as a heterogeneous Fenton reagent. Five principle operational parameters, especially solution pH value, were taken into account to investigate how the heterogeneous Fenton process factors mediated the TC removal. This process was effective but seriously impacted by the pH value and temperature, as well as the dosages of α-FeOOH, TC and H2O2. Very interestingly, the acidic and alkaline aqueous medium conditions were both very favorable due to the occurrence of transformation of Fe(III) to Fe(II) on goethite surfaces reduced by TC at pH 3.0~4.0 even though with a low adsorption capacity of TC because its maximum adsorption of negatively charged form occurred at pH around 8.0[1], thereby greatly promoting the TC Fenton oxidative elimination. However, a rapid initial TC decay was observed at the first 5 min, followed by a much slower retardation stage, which was likely because the reductive transformation of Fe(III) to Fe(II) by TC in the solution was inhibited as the Fenton reaction proceeded. Moreover, the hydroxyl radical scavenger t-butanol addition can decrease the removal rate of TC in the goethite/H2O2 system to a certain extent. This further indicated that the main reactive species in this process were hydroxyl radicals[2]. All the goethite-catalysed heterogeneous Fenton reactions are responsible for the TC removal following the Langmuir-Hinshelwood model, were well fitted to pseudo-first order kinetics (R2】0.99), and their apparent activation energy (E) for this Fenton-like reaction was 31.86 kJ mol 1, a low value that is highly consistent with the ease of TC decay greatly enhanced by the temperature rise, indicated that the interfacial controlling interactions such as a proton induced solubilization and a reductive dissolution of goethite can clearly improve its Fenton catalytic activity[3], and these dissolution processes may not be effective in some cases, while the TC adsorption process may always play an important role to control the TC removal rate during the Fenton reaction.展开更多
基金supported by the National Natural Science Foundation of China(724701189072431011).
文摘Project construction and development are an impor-tant part of future army designs.In today’s world,intelligent war-fare and joint operations have become the dominant develop-ments in warfare,so the construction and development of the army need top-down,top-level design,and comprehensive plan-ning.The traditional project development model is no longer suf-ficient to meet the army’s complex capability requirements.Projects in various fields need to be developed and coordinated to form a joint force and improve the army’s combat effective-ness.At the same time,when a program consists of large-scale project data,the effectiveness of the traditional,precise mathe-matical planning method is greatly reduced because it is time-consuming,costly,and impractical.To solve above problems,this paper proposes a multi-stage program optimization model based on a heterogeneous network and hybrid genetic algo-rithm and verifies the effectiveness and feasibility of the model and algorithm through an example.The results show that the hybrid algorithm proposed in this paper is better than the exist-ing meta-heuristic algorithm.
基金This work was supported by the Youth Foundation of National Science Foundation of China(62001503)the Special Fund for Taishan Scholar Project(ts 201712072).
文摘To solve the problem that the existing situation awareness research focuses on multi-sensor data fusion,but the expert knowledge is not fully utilized,a heterogeneous informa-tion fusion recognition method based on belief rule structure is proposed.By defining the continuous probabilistic hesitation fuzzy linguistic term sets(CPHFLTS)and establishing CPHFLTS distance measure,the belief rule base of the relationship between feature space and category space is constructed through information integration,and the evidence reasoning of the input samples is carried out.The experimental results show that the proposed method can make full use of sensor data and expert knowledge for recognition.Compared with the other methods,the proposed method has a higher correct recognition rate under different noise levels.
基金This work was supported by the Natural Science Foundation of Heilongjiang Province(LH2022F049).
文摘Overlooking the issue of false alarm suppression in heterogeneous change detection leads to inferior detection per-formance.This paper proposes a method to handle false alarms in heterogeneous change detection.A lightweight network of two channels is bulit based on the combination of convolutional neural network(CNN)and graph convolutional network(GCN).CNNs learn feature difference maps of multitemporal images,and attention modules adaptively fuse CNN-based and graph-based features for different scales.GCNs with a new kernel filter adaptively distinguish between nodes with the same and those with different labels,generating change maps.Experimental evaluation on two datasets validates the efficacy of the pro-posed method in addressing false alarms.
基金supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2022D01B187).
文摘Heterogeneous federated learning(HtFL)has gained significant attention due to its ability to accommodate diverse models and data from distributed combat units.The prototype-based HtFL methods were proposed to reduce the high communication cost of transmitting model parameters.These methods allow for the sharing of only class representatives between heterogeneous clients while maintaining privacy.However,existing prototype learning approaches fail to take the data distribution of clients into consideration,which results in suboptimal global prototype learning and insufficient client model personalization capabilities.To address these issues,we propose a fair trainable prototype federated learning(FedFTP)algorithm,which employs a fair sampling training prototype(FSTP)mechanism and a hyperbolic space constraints(HSC)mechanism to enhance the fairness and effectiveness of prototype learning on the server in heterogeneous environments.Furthermore,a local prototype stable update(LPSU)mechanism is proposed as a means of maintaining personalization while promoting global consistency,based on contrastive learning.Comprehensive experimental results demonstrate that FedFTP achieves state-of-the-art performance in HtFL scenarios.
文摘Heterogeneous computing is one effective method of high performance computing with many advantages. Task scheduling is a critical issue in heterogeneous environments as well as in homogeneous environments. A number of task scheduling algorithms for homogeneous environments have been proposed, whereas, a few for heterogeneous environments can be found in the literature. A novel task scheduling algorithm for heterogeneous environments, called the heterogeneous critical task (HCT) scheduling algorithm is presented. By means of the directed acyclic graph and the gantt graph, the HCT algorithm defines the critical task and the idle time slot. After determining the critical tasks of a given task, the HCT algorithm tentatively duplicates the critical tasks onto the processor that has the given task in the idle time slot, to reduce the start time of the given task. To compare the performance of the HCT algorithm with several recently proposed algorithms, a large set of randomly generated applications and the Gaussian elimination application are randomly generated. The experimental result has shown that the HCT algorithm outperforms the other algorithm.
基金Project(61801495)supported by the National Natural Science Foundation of China
文摘The application of multiple UAVs in complicated tasks has been widely explored in recent years.Due to the advantages of flexibility,cheapness and consistence,the performance of heterogeneous multi-UAVs with proper cooperative task allocation is superior to over the single UAV.Accordingly,several constraints should be satisfied to realize the efficient cooperation,such as special time-window,variant equipment,specified execution sequence.Hence,a proper task allocation in UAVs is the crucial point for the final success.The task allocation problem of the heterogeneous UAVs can be formulated as a multi-objective optimization problem coupled with the UAV dynamics.To this end,a multi-layer encoding strategy and a constraint scheduling method are designed to handle the critical logical and physical constraints.In addition,four optimization objectives:completion time,target reward,UAV damage,and total range,are introduced to evaluate various allocation plans.Subsequently,to efficiently solve the multi-objective optimization problem,an improved multi-objective quantum-behaved particle swarm optimization(IMOQPSO)algorithm is proposed.During this algorithm,a modified solution evaluation method is designed to guide algorithmic evolution;both the convergence and distribution of particles are considered comprehensively;and boundary solutions which may produce some special allocation plans are preserved.Moreover,adaptive parameter control and mixed update mechanism are also introduced in this algorithm.Finally,both the proposed model and algorithm are verified by simulation experiments.
文摘A new vertical handoff decision algorithm is proposed to maximize the system benefit in heterogeneous wireless networks which comprise cellular networks and wireless local area networks (WLANs). Firstly the block probability, the drop probability and the number of users in the heterogeneous networks are calculated in the channel-guard call admission method, and a function of the system benefit which is based on the new call arrival rate and the handoff call arrival rate is proposed. Then the optimal radius of WLAN is obtained by using simulation annealing (SA) method to maximize the benefit. All the nodes should handoff from cellular network to WLAN if they enter WLAN's scope and handoff from WLAN to cellular network if they leave the scope. Finally, the algorithm in different new call arrival rates and handoff call arrival rates is analyzed and results show that it can achieve good effects.
基金Project(51038004) supported by the National Natural Science Foundation of China
文摘In order to verify the validity of finite element numerical simulation method for asphalt mixture, which consists of aggregates, mastic (where mastic is a kind of fine mixture composed of asphalt binder mixed with fines and fine aggregates) and air voids, based on three-dimensional (3D) heterogeneous specimen, X-ray computerized tomography (X-ray CT) was used to scan the asphalt specimens to obtain the real internal microstrnctures of asphalt mixture. CT images were reconstructed to build up 3D digital specimen, and the viscoelastic properties of mastic were described with Burgers model The uniaxial creep numerical simulations of three different levels of aggregate gradation were conducted. The simulation results agree well with the experimental results. The numerical simulation of asphalt mixture incorporated with real 3D microstructure based on finite element method is a promising application to conduct research of asphalt concrete. Additionally, this method can increase the mechanistic understanding of global viscoelastic properties of asphalt mixtures by linking the real 3D microstructure.
基金Project(CZQ13002)supported by the Special Fund for Basic Scientific Research of Central Universities,China
文摘Heterogeneous Fenton-like process using fly ash as a catalyst was studied to degrade n-butyl xanthate form aqueous solution. The different reaction parameters on the degradation efficiency of the process were investigated. The fly ash/H2O2 catalyst possesses a high oxidation activity for n-butyl xanthate degradation in aqueous solution. It is found that both the dosage of catalyst and initial solution pH significantly affect the n-butyl xanthate conversion efficient. The results indicate that by using 1.176 mmol/L H2O2 and 1.0 g/L fly ash catalyst with mass fraction of 4.14% Fe(III) oxide at pH 3.0, almost 96.90% n-butyl xanthate conversion and over 96.66% COD removal can be achieved within 120 min with heterogeneous catalysis by fly ash. CS2 as an intermediate of n-butyl xanthate oxidation. Finally, it is demonstrated that the fly ash/H2O2 catalytic oxidation process can be an efficient method for the treatment of n-butyl xanthate containing wastewater.
基金funded by the University of Malaya, under Grant No.RG208-11AFR
文摘Heterogeneous wireless access technologies will coexist in next generation wireless networks.These technologies form integrated networks,and these networks support multiple services with high quality level.Various access technologies allow users to select the best available access network to meet the requirements of each type of communication service.Being always best connected anytime and anywhere is a major concern in a heterogeneous wireless networks environment.Always best connected enables network selection mechanisms to keep mobile users always connected to the best network.We present an overview of the network selection and prediction problems and challenges.In addition,we discuss a comprehensive classification of related theoretic approaches,and also study the integration between these methods,finding the best solution of network selection and prediction problems.The optimal solution can fulfill the requirements of the next generation wireless networks.
文摘The present article deals with thermally stratified stagnation-point flow saturated in porous medium on surface of variable thickness along with more convincing and reliable surface condition termed as melting heat transfer.Homogeneous–heterogeneous reaction and radiative effects have been further taken into account to reconnoiterproperties of heat transfer.Melting heat transfer and phenomenon of homogeneous–heterogeneous reaction have engrossed widespread utilization in purification of metals,welding process,electroslag melting,biochemical systems,catalysis and several industrial developments.Suitable transformations are utilized to attain a scheme of ordinary differential equations possessing exceedingly nonlinear nature.Homotopic process is employed to develop convergent solutions of the resulting problem.Discussion regarding velocity,thermal field and concentration distribution for several involved parameters is pivotal part.Graphical behaviors of skin friction coefficient and Nusselt number are also portrayed.Concentration of the reactants is found to depreciate as a result of strength of both heterogeneous and homogeneous reaction parameters.With existence of melting phenomenon,declining attitude of fluid temperature is observed for higher radiation parameter.
基金Projects(61170049,60903044)supported by National Natural Science Foundation of ChinaProject(2012AA010903)supported by National High Technology Research and Development Program of China
文摘Particle-in-cell (PIC) method has got much benefits from GPU-accelerated heterogeneous systems.However,the performance of PIC is constrained by the interpolation operations in the weighting process on GPU (graphic processing unit).Aiming at this problem,a fast weighting method for PIC simulation on GPU-accelerated systems was proposed to avoid the atomic memory operations during the weighting process.The method was implemented by taking advantage of GPU's thread synchronization mechanism and dividing the problem space properly.Moreover,software managed shared memory on the GPU was employed to buffer the intermediate data.The experimental results show that the method achieves speedups up to 3.5 times compared to previous works,and runs 20.08 times faster on one NVIDIA Tesla M2090 GPU compared to a single core of Intel Xeon X5670 CPU.
基金Project(61170049) supported by the National Natural Science Foundation of ChinaProject(2012AA010903) supported by the National High Technology Research and Development Program of China
文摘Peta-scale high-perfomlance computing systems are increasingly built with heterogeneous CPU and GPU nodes to achieve higher power efficiency and computation throughput. While providing unprecedented capabilities to conduct computational experiments of historic significance, these systems are presently difficult to program. The users, who are domain experts rather than computer experts, prefer to use programming models closer to their domains (e.g., physics and biology) rather than MPI and OpenME This has led the development of domain-specific programming that provides domain-specific programming interfaces but abstracts away some performance-critical architecture details. Based on experience in designing large-scale computing systems, a hybrid programming framework for scientific computing on heterogeneous architectures is proposed in this work. Its design philosophy is to provide a collaborative mechanism for domain experts and computer experts so that both domain-specific knowledge and performance-critical architecture details can be adequately exploited. Two real-world scientific applications have been evaluated on TH-IA, a peta-scale CPU-GPU heterogeneous system that is currently the 5th fastest supercomputer in the world. The experimental results show that the proposed framework is well suited for developing large-scale scientific computing applications on peta-scale heterogeneous CPU/GPU systems.
基金Project(2012AA01A301-01)supported by the National High-Tech Research and Development Plan of ChinaProjects(61301148,61272061)supported by the National Natural Science Foundation of China+3 种基金Projects(20120161120019,2013016111002)supported by the Research Fund for the Doctoral Program of Higher Education of ChinaProjects(14JJ7023,10JJ5069)supported by the Natural Science Foundation of Hunan Province,ChinaProject(ISN12-05)supported by State Key Laboratory of Integrated Services Networks Open Foundation,ChinaProject(531107040276)supported by the Fundamental Research Funds for the Central Universities,China
文摘Abstract: Two-tier heterogeneous networks (HetNets), where the current cellular networks, i.e., macrocells, are overlapped with a large number of randomly distributed femtocells, can potentially bring significant benefits to spectral utilization and system capacity. The interference management and access control for open and closed femtocells in two-tier HetNets were focused. The contributions consist of two parts. Firstly, in order to reduce the uplink interference caused by MUEs (macrocell user equipments) at closed femtocells, an incentive mechanism to implement interference mitigation was proposed. It encourages femtoeells that work with closed-subscriber-group (CSG) to allow the interfering MUEs access in but only via uplink, which can reduce the interference significantly and also benefit the marco-tier. The interference issue was then studied in open-subscriber-group (OSG) femtocells from the perspective of handover and mobility prediction. Inbound handover provides an alternative solution for open femtocells when interference turns up, while this accompanies with PCI (physical cell identity) confusion during inbound handover. To reduce the PCI confusion, a dynamic PCI allocation scheme was proposed, by which the high handin femtocells have the dedicated PCI while the others share the reuse PCIs. A Markov chain based mobility prediction algorithm was designed to decide whether the femtoeell status is with high handover requests. Numerical analysis reveals that the UL interference is managed well for the CSG femtocell and the PCI confusion issue is mitigated greatly in OSG femtocell compared to the conventional approaches.
文摘The precursors with NiCO3·2Ni(OH)2·2H2O, Fe2O3·nH2O coated alumina microspheres were prepared by the aqueous heterogeneous precipitation using metal salts, ammonium bicarbonate and α-Al2O3 micropowders as the starting materials. Magnetic metal Ni, α-Fe coated alumina, core-shell structural microspheres were successfully obtained by thermal reduction of the precursors at 700℃ for 2h, respectively. Powders of the precursors and the resultant metal (Ni, α-Fe) coated alumina micropowders were characterized by scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. The results show that optimized precipitation parameters are concentration of alumina micropowders of 15g/L, rate of adding reactants of 5mL/min and pH value of 7.5. And under the optimized conditions, the spherical precursors without aggregations or agglomerations are obtained, then transferred into Ni, α-Fe coated alumina microspheres by thermal reduction. It is possible to adjust metal coating thicknesses and fabricate a multilayer structured metal/ceramics, core-shell microspherical powder materials.
文摘Surface roughness is one of the main indexes in qua li ty assessment of machined components. Surface generation by material removal pro cess depends on the machining process mechanism. The material removal mechanisms are different for machining common materials and heterogeneous materials. Machi ned surface profiles of conventional engineering materials are determined by the moving tracks of tool edges on workpiece surface, the roughness mainly depends on the cutting parameters and the geometrical shape of cutting tool. Heterogeneo us materials consist of two or more separate materials, their properties vary fr om one phase to another and change along with measurement direction. When he terogeneous materials are cut, a quantity of machining-conduced imperfections o ccurs in the machined surface, part of the surface profiles do not directly result from the cutting of tool edges but from the imperfections, the surface te xture may confuse or disappears. The imperfections distribute randomly and their shapes are irregular, the spacing of profile peaks and valleys is irregular and un-periodical, therefore, they cannot be distinguished by wavelength. The prof iles of machined surface of heterogeneous materials have dense, narrow and sharp peaks and valleys. The amplitude distribution of profile peak and valley is dis persed and unsymmetrical, and usually the profile has a positive skewness. Ten p oint height of irregularities or root-mean-square deviation of the profile is more appropriate parameter than maximum height or arithmetical mean deviation of the profile for describing the height characteristics of roughness, and statist ical method and random process method are used to describe the irregularity distribution of the profile.
基金Project(20277010) supported by the National Natural Science Foundation of China
文摘Decoloration and mineralization of yeast wastewater were investigated by using Ce-Fe/Al2O3 as a heterogeneous photo-Fenton catalyst in fluidized bed reactor in order to solve the problem of yeast wastewater discharge. The experimental results were assessed in terms of total organic carbon(TOC) reduction. The operational and reaction conditions affecting the efficiencies of TOC removal such as initial pH value, H2O2 concentration, catalyst loading and UV power were studied. The results show that TOC is reduced from 347.6 mg/L to 10.8 mg/L, color is changed from 500 units to 0 under the conditions as follows: initial pH value 6. 0, H2O2 concentration of 1. 000 g/L, catalyst loading of 5 g/L, reaction duration of 120 rain and reaction temperature of 30 ℃. The irradiated Ce-Fe/Al2O3 catalyst was complexed with 1,10-phenanthroline and then it was subjected to Fourier transform infrared spectroscopy and diffuse reflectance spectroscopy to confirm the formation of Fe(Ⅱ) in the solid state. Heterogeneous photo-Fenton reaction proves to be effective for the treatment of yeast wastewater.
基金supported by the National Natural Science Foundation of China(61971470).
文摘This paper proposes an optimal deployment method of heterogeneous multistatic radars to construct arc barrier coverage with location restrictions.This method analyzes and proves the properties of different deployment patterns in the optimal deployment sequence.Based on these properties and considering location restrictions,it introduces an optimization model of arc barrier coverage and aims to minimize the total deployment cost of heterogeneous multistatic radars.To overcome the non-convexity of the model and the non-analytical nature of the objective function,an algorithm combining integer line programming and the cuckoo search algorithm(CSA)is proposed.The proposed algorithm can determine the number of receivers and transmitters in each optimal deployment squence to minimize the total placement cost.Simulations are conducted in different conditions to verify the effectiveness of the proposed method.
文摘The removal of the antibiotic compound tetracycline hydrochloride (TC) was investigated by using goethite/H2O2 as a heterogeneous Fenton reagent. Five principle operational parameters, especially solution pH value, were taken into account to investigate how the heterogeneous Fenton process factors mediated the TC removal. This process was effective but seriously impacted by the pH value and temperature, as well as the dosages of α-FeOOH, TC and H2O2. Very interestingly, the acidic and alkaline aqueous medium conditions were both very favorable due to the occurrence of transformation of Fe(III) to Fe(II) on goethite surfaces reduced by TC at pH 3.0~4.0 even though with a low adsorption capacity of TC because its maximum adsorption of negatively charged form occurred at pH around 8.0[1], thereby greatly promoting the TC Fenton oxidative elimination. However, a rapid initial TC decay was observed at the first 5 min, followed by a much slower retardation stage, which was likely because the reductive transformation of Fe(III) to Fe(II) by TC in the solution was inhibited as the Fenton reaction proceeded. Moreover, the hydroxyl radical scavenger t-butanol addition can decrease the removal rate of TC in the goethite/H2O2 system to a certain extent. This further indicated that the main reactive species in this process were hydroxyl radicals[2]. All the goethite-catalysed heterogeneous Fenton reactions are responsible for the TC removal following the Langmuir-Hinshelwood model, were well fitted to pseudo-first order kinetics (R2】0.99), and their apparent activation energy (E) for this Fenton-like reaction was 31.86 kJ mol 1, a low value that is highly consistent with the ease of TC decay greatly enhanced by the temperature rise, indicated that the interfacial controlling interactions such as a proton induced solubilization and a reductive dissolution of goethite can clearly improve its Fenton catalytic activity[3], and these dissolution processes may not be effective in some cases, while the TC adsorption process may always play an important role to control the TC removal rate during the Fenton reaction.