Sodium-ion batteries have emerged as competitive substitutes for low-temperature applications due to severe capacity loss and safety concerns of lithium-ion batteries at−20°C or lower.However,the key capability o...Sodium-ion batteries have emerged as competitive substitutes for low-temperature applications due to severe capacity loss and safety concerns of lithium-ion batteries at−20°C or lower.However,the key capability of ultrafast charging at ultralow temperature for SIBs is rarely reported.Herein,a hybrid of Bi nanoparticles embedded in carbon nanorods is demonstrated as an ideal material to address this issue,which is synthesized via a high temperature shock method.Such a hybrid shows an unprecedented rate performance(237.9 mAh g^(−1) at 2 A g^(−1))at−60℃,outperforming all reported SIB anode materials.Coupled with a Na_(3)V_(2)(PO_(4))_(3)cathode,the energy density of the full cell can reach to 181.9 Wh kg^(−1) at−40°C.Based on this work,a novel strategy of high-rate activation is proposed to enhance performances of Bi-based materials in cryogenic conditions by creating new active sites for interfacial reaction under large current.展开更多
Poor Li plating reversibility and high thermal runaway risks are key challenges for fast charging lithiumion batteries with graphite anodes.Herein,a dielectric and fire-resistant separator based on hybrid nanofibers o...Poor Li plating reversibility and high thermal runaway risks are key challenges for fast charging lithiumion batteries with graphite anodes.Herein,a dielectric and fire-resistant separator based on hybrid nanofibers of barium sulfate(BS)and bacterial cellulose(BC)is developed to synchronously enhance the battery's fast charging and thermal-safety performances.The regulation mechanism of the dielectric BS/BC separator in enhancing the Li^(+)ion transport and Li plating reversibility is revealed.(1)The Max-Wagner polarization electric field of the dielectric BS/BC separator can accelerate the desolvation of solvated Li^(+)ions,enhancing their transport kinetics.(2)Moreover,due to the charge balancing effect,the dielectric BS/BC separator homogenizes the electric field/Li^(+)ion flux at the graphite anode-separator interface,facilitating uniform Li plating and suppressing Li dendrite growth.Consequently,the fast-charge graphite anode with the BS/BC separator shows higher Coulombic efficiency(99.0%vs.96.9%)and longer cycling lifespan(100 cycles vs.59 cycles)than that with the polypropylene(PP)separator in the constantlithiation cycling test at 2 mA cm^(-2).The high-loading LiFePO4(15.5 mg cm^(-2))//graphite(7.5 mg cm^(-2))full cell with the BS/BC separator exhibits excellent fast charging performance,retaining 70%of its capacity after 500 cycles at a high rate of 2C,which is significantly better than that of the cell with the PP separator(retaining only 27%of its capacity after 500 cycles).More importantly,the thermally stable BS/BC separator effectively elevates the critical temperature and reduces the heat release rate during thermal runaway,thereby significantly enhancing the battery's safety.展开更多
With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair compar...With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair comparison, and performance rationalization of these methods are lacking, due to the scattered existing studies. To address these issues, we develop 20 capacity estimation methods from three perspectives:charging sequence construction, input forms, and ML models. 22,582 charging curves are generated from 44 cells with different battery chemistry and operating conditions to validate the performance. Through comprehensive and unbiased comparison, the long short-term memory(LSTM) based neural network exhibits the best accuracy and robustness. Across all 6503 tested samples, the mean absolute percentage error(MAPE) for capacity estimation using LSTM is 0.61%, with a maximum error of only 3.94%. Even with the addition of 3 m V voltage noise or the extension of sampling intervals to 60 s, the average MAPE remains below 2%. Furthermore, the charging sequences are provided with physical explanations related to battery degradation to enhance confidence in their application. Recommendations for using other competitive methods are also presented. This work provides valuable insights and guidance for estimating battery capacity based on partial charging curves.展开更多
Conformable and wire-less charging energy storage devices play important roles in enabling the fast development of wearable,non-contact soft electronics.However,current wire-less charging power sources are still restr...Conformable and wire-less charging energy storage devices play important roles in enabling the fast development of wearable,non-contact soft electronics.However,current wire-less charging power sources are still restricted by limited flexural angles and fragile connection of components,resulting in the failure expression of performance and constraining their fur-ther applications in health monitoring wearables and moveable artificial limbs.Herein,we present an ultracompatible skin-like integrated wireless charging micro-supercapacitor,which building blocks(including electrolyte,electrode and substrate)are all evaporated by liquid precursor.Owing to the infiltration and permeation of the liquid,each part of the integrated device attached firmly with each other,forming a compact and all-in-one configuration.In addition,benefitting from the controllable volume of electrode solution precursor,the electrode thickness is easily regulated varying from 11.7 to 112.5μm.This prepared thin IWC-MSC skin can fit well with curving human body,and could be wireless charged to store electricity into high capacitive micro-supercapacitors(11.39 F cm-3)of the integrated device.We believe this work will shed light on the construction of skin-attachable electronics and irregular sensing microrobots.展开更多
Electrolytic aqueous zinc-manganese(Zn–Mn) batteries have the advantage of high discharge voltage and high capacity due to two-electron reactions. However, the pitfall of electrolytic Zn–Mn batteries is the sluggish...Electrolytic aqueous zinc-manganese(Zn–Mn) batteries have the advantage of high discharge voltage and high capacity due to two-electron reactions. However, the pitfall of electrolytic Zn–Mn batteries is the sluggish deposition reaction kinetics of manganese oxide during the charge process and short cycle life. We show that, incorporating ZnO electrolyte additive can form a neutral and highly viscous gel-like electrolyte and render a new form of electrolytic Zn–Mn batteries with significantly improved charging capabilities. Specifically, the ZnO gel-like electrolyte activates the zinc sulfate hydroxide hydrate assisted Mn^(2+) deposition reaction and induces phase and structure change of the deposited manganese oxide(Zn_(2)Mn_(3)O_8·H_(2)O nanorods array), resulting in a significant enhancement of the charge capability and discharge efficiency. The charge capacity increases to 2.5 mAh cm^(-2) after 1 h constant-voltage charging at 2.0 V vs. Zn/Zn^(2+), and the capacity can retain for up to 2000 cycles with negligible attenuation. This research lays the foundation for the advancement of electrolytic Zn–Mn batteries with enhanced charging capability.展开更多
Typical application scenarios,such as vehicle to grid(V2G)and frequency regulation,have imposed significant long-life demands on lithium-ion batteries.Herein,we propose an advanced battery life-extension method employ...Typical application scenarios,such as vehicle to grid(V2G)and frequency regulation,have imposed significant long-life demands on lithium-ion batteries.Herein,we propose an advanced battery life-extension method employing bidirectional pulse charging(BPC)strategy.Unlike traditional constant current charging methods,BPC strategy not only achieves comparable charging speeds but also facilitates V2G frequency regulation simultaneously.It significantly enhances battery cycle ampere-hour throughput and demonstrates remarkable life extension capabilities.For this interesting conclusion,adopting model identification and postmortem characterization to reveal the life regulation mechanism of BPC:it mitigates battery capacity loss attributed to loss of lithium-ion inventory(LLI)in graphite anodes by intermittently regulating the overall battery voltage and anode potential using a negative charging current.Then,from the perspective of internal side reaction,the life extension mechanism is further revealed as inhibition of solid electrolyte interphase(SEI)and lithium dendrite growth by regulating voltage with a bidirectional pulse current,and a semi-empirical life degradation model combining SEI and lithium dendrite growth is developed for BPC scenarios health management,the model parameters are identified by genetic algorithm with the life simulation exhibiting an accuracy exceeding 99%.This finding indicates that under typical rate conditions,adaptable BPC strategies can extend the service life of LFP battery by approximately 123%.Consequently,the developed advanced BPC strategy offers innovative perspectives and insights for the development of long-life battery applications in the future.展开更多
Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effe...Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effectively addresses the aforementioned problems;however,the impact of its quality on lithium-ion transfer and structure durability is yet to be explored.Herein,the influence of an interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time.2D modeling simulation and Cryo-transmission electron microscopy precisely reveal the mitigation of interface polarization owing to a higher fraction of conductive inorganic species formation in bilayer solid electrolyte interphase is mainly responsible for a linear decrease in ionic diffusion energy barrier.Furthermore,atomic force microscopy and Raman shift exhibit substantial stress dissipation generated by a complete conductive network,which is critical to the linear reduction of electrode residual stress.This study provides insights into the rational design of optimized interface SiO-based anodes with reinforced fast-charging performance.展开更多
Fast charging is restricted primarily by the risk of lithium(Li)plating,a side reaction that can lead to the rapid capacity decay and dendrite-induced thermal runaway of lithium-ion batteries(LIBs).Investigation on th...Fast charging is restricted primarily by the risk of lithium(Li)plating,a side reaction that can lead to the rapid capacity decay and dendrite-induced thermal runaway of lithium-ion batteries(LIBs).Investigation on the intrinsic mechanism and the position of Li plating is crucial to improving the fast rechargeability and safety of LIBs.Herein,we investigate the Li plating behavior in porous electrodes under the restricted transport of Li^(+).Based on the theoretical model,it can be concluded that the Li plating on the anodeseparator interface(ASI)is thermodynamically feasible and kinetically advantageous.Meanwhile,the prior deposition of metal Li on the ASI rather than the anode-current collector interface(ACI)is verified experimentally.In order to facilitate the transfer of Li^(+)among the electrode and improve the utilization of active materials without Li plating,a bilayer asymmetric anode composed of graphite and hard carbon(GH)is proposed.Experimental and simulation results suggest that the GH hybrid electrode homogenizes the lithiated-rate throughout the electrode and outperforms the pure graphite electrode in terms of the rate performance and inhibition of Li plating.This work provides new insights into the behavior of Li plating and the rational design of electrode structure.展开更多
The limited energy density of lithium-ion capacitors poses a significant obstacle to their widespread application,primarily stemming from the inability of the electrodes to simultaneously fulfill both high energy dens...The limited energy density of lithium-ion capacitors poses a significant obstacle to their widespread application,primarily stemming from the inability of the electrodes to simultaneously fulfill both high energy density and rapid charging requirements.Experimental data demonstrate that a directional particle configuration can enhance charging speed while maintaining high-capacity density,but it is rarely discussed.Here,we have developed a particle-level electrochemical model capable of reconstructing an electrode with a directional particle configuration.By employing this method,an investigation was conducted to explore how the spatial morphology characteristics of particle configuration impact the energy storage characteristics of electrodes.Results demonstrate that rational particle configuration can effectively enhance the transport of lithium ions and create additional space for lithium-ion storage.With the same particle size distribution,the best electrode can increase the discharge capacity by up to132.4% and increase the charging SOC by 11.3% compared to the ordinary electrode under the condition of 6 C.These findings provide a further understanding of the energy storage mechanism inside the anisotropic particle distribution electrode,which is important for developing high-performance lithium-ion capacitors.展开更多
Cell-to-cell variations(CtCV) compromise the electrochemical performance of battery packs, yet the evolutional mechanism and quantitative impacts of CtCV on the pack's fast-charging performance remain unexplored. ...Cell-to-cell variations(CtCV) compromise the electrochemical performance of battery packs, yet the evolutional mechanism and quantitative impacts of CtCV on the pack's fast-charging performance remain unexplored. This knowledge gap is vital for the proliferation of electric vehicles. This study underlies the relationship between CtCV and charging performance by assessing the pack's charge speed, final electric quantity, and temperature consistency. Cell variations and pack status are depicted using 2D parameter diagrams, and an m PnS configured pack model is built upon a decomposed electrode cell model.Variations in three single electric parameters, i.e., capacity(Q), electric quantity(E), and internal resistance(R), and their dual interactions, i.e., E-Q and R-Q, are analyzed carefully. The results indicate that Q variations predominantly affect the final electric quantity of the pack, while R variations impact the charge speed most. With incremental variances in cell parameters, the pack's fast-charging capability first declines linearly and then deteriorates sharply as variations intensify. This research elucidates the correlations between pack charging capabilities and cell variations, providing essential insights for optimizing cell sorting and assembly, battery management design, and charging protocol development for battery packs.展开更多
The aging characteristics of lithium-ion battery(LIB)under fast charging is investigated based on an electrochemical-thermal-mechanical(ETM)coupling model.Firstly,the ETM coupling model is established by COMSOL Multip...The aging characteristics of lithium-ion battery(LIB)under fast charging is investigated based on an electrochemical-thermal-mechanical(ETM)coupling model.Firstly,the ETM coupling model is established by COMSOL Multiphysics.Subsequently,a long cycle test was conducted to explore the aging characteristics of LIB.Specifically,the effects of charging(C)rate and cycle number on battery aging are analyzed in terms of nonuniform distribution of solid electrolyte interface(SEI),SEI formation,thermal stability and stress characteristics.The results indicate that the increases in C rate and cycling led to an increase in the degree of nonuniform distribution of SEI,and thus a consequent increase in the capacity loss due to the SEI formation.Meanwhile,the increases in C rate and cycle number also led to an increase in the heat generation and a decrease in the heat dissipation rate of the battery,respectively,which result in a decrease in the thermal stability of the electrode materials.In addition,the von Mises stress of the positive electrode material is higher than that of the negative electrode material as the cycling proceeds,with the positive electrode material exhibiting tensile deformation and the negative electrode material exhibiting compressive deformation.The available lithium ion concentration of the positive electrode is lower than that of the negative electrode,proving that the tensile-type fracture occurring in the positive material under long cycling dominated the capacity loss process.The aforementioned studies are helpful for researchers to further explore the aging behavior of LIB under fast charging and take corresponding preventive measures.展开更多
Secondary electron emission(SEE)induced by the positive ion is an essential physical process to influence the dynamics of gas discharge which relies on the specific surface material.Surface charging has a significant ...Secondary electron emission(SEE)induced by the positive ion is an essential physical process to influence the dynamics of gas discharge which relies on the specific surface material.Surface charging has a significant impact on the material properties,thereby affecting the SEE in the plasma-surface interactions.However,it does not attract enough attention in the previous studies.In this paper,SEE dependent on the charged surface of specific materials is described with the computational method combining a density functional theory(DFT)model from the first-principle theory and the theory of Auger neutralization.The effect ofκ-Al2O3 surface charge,as an example,on the ion-induced secondary electron emission coefficient(SEEC)is investigated by analyzing the defect energy level and band structure on the charged surface.Simulation results indicate that,with the surface charge from negative to positive,the SEEC of a part of low ionization energy ions(such as Ei=12.6 eV)increases first and then decreases,exhibiting a nonlinear changing trend.This is quite different from the monotonic decreasing tendency observed in the previous model which simplifies the electronic structure.This irregular increase of the SEEC can be attributed to the lower escaped probability of orbital energy.The results further illustrate that the excessive charge could cause the bottom of the conduction band close to the valence band,thus leading to the decrease of the orbital energy occupied by the excited electrons.The nonlinear change of SEEC demonstrates a more realistic situation of how the electronic structure of material surface influences the SEE process.This work provides an accurate method of calculating SEEC from specific materials,which is urgent in widespread physical scenarios sensitive to surface materials,such as increasingly growing practical applications concerning plasma-surface interactions.展开更多
Recently,there has been a huge increase in the usage of fuel resources for automobiles which is severely affecting the climate and causing global warming.The use of electric vehicle(EV)is an effective way to protect t...Recently,there has been a huge increase in the usage of fuel resources for automobiles which is severely affecting the climate and causing global warming.The use of electric vehicle(EV)is an effective way to protect the environment and reduce travel costs.However,the EV charging system has a single charging source,and the charging rate is limited.In this paper,an EV wireless charging system based on dual source power supply has been developed.It realizes intelligent switching between 12 V photovoltaic output and 220 V AC dual source power,and has wireless transmission function.Based on the proposed power supply architecture,the micro wireless charging model is built,which enables the EV model to store power and realize static and mobile control through the wireless induction charging system.展开更多
The complex symmetry breaking states in AV3Sb5 family have attracted extreme research attention,but controversy still exists,especially in the question of time reversal symmetry breaking of the charge density wave(CDW...The complex symmetry breaking states in AV3Sb5 family have attracted extreme research attention,but controversy still exists,especially in the question of time reversal symmetry breaking of the charge density wave(CDW).Most recently,a chiral CDW has been suggested in kagome magnet FeGe,but the related study is very rare.Here,we use a scanning tunneling microscope to study the symmetry breaking behavior of both the short-and long-range CDWs in FeGe.Different from previous studies,our study reveals an isotropic long-range CDW without obvious symmetry breaking,while local rotational symmetry breaking appears in the short-range CDW,which may be related to the existence of strong structural disorders.Moreover,the charge distribution of the short-range CDW is inert to the applied external magnetic fields and the detailed spin arrangements of FeGe,inconsistent with the expectation of a chiral CDW associated with chiral flux.Our results rule out the existence of spontaneous chiral and rotational symmetry breaking in the CDW state of FeGe,putting strong constraints on the further understanding of CDW mechanism.展开更多
The NEutron Detector Array(NEDA)is designed to be coupled to gamma-ray spectrometers to enhance the sensitivity of the setup by enabling reaction channel selection through counting of the evaporated neutrons.This arti...The NEutron Detector Array(NEDA)is designed to be coupled to gamma-ray spectrometers to enhance the sensitivity of the setup by enabling reaction channel selection through counting of the evaporated neutrons.This article presents the implementation of a double trigger condition system for NEDA,which improves the acquisition of neutrons and reduces the number of gamma rays acquired.Two independent triggers are generated in the double trigger condition system:one based on charge comparison(CC)and the other on time-of-flight(TOF).These triggers can be combined using OR and AND logic,offering four distinct trigger modes.The developed firmware is added to the previous one in the Virtex 6 field programmable gate array(FPGA)present in the system,which also includes signal processing,baseline correction,and various trigger logic blocks.The performance of the trigger system is evaluated using data from the E703 experiment performed at GANIL.The four trigger modes are applied to the same data,and a subsequent offline analysis is performed.It is shown that most of the detected neutrons are preserved with the AND mode,and the total number of gamma rays is significantly reduced.Compared with the CC trigger mode,the OR trigger mode allows increasing the selection of neutrons.In addition,it is demonstrated that if the OR mode is selected,the online CC trigger threshold can be raised without losing neutrons.展开更多
Carbon-based perovskite solar cells(C-PSCs)exhibit notable stability and durability.However,the power conversion efficiency(PCE)is significantly hindered by energy level mismatches,which result in interfacial charge t...Carbon-based perovskite solar cells(C-PSCs)exhibit notable stability and durability.However,the power conversion efficiency(PCE)is significantly hindered by energy level mismatches,which result in interfacial charge transport barriers at the electrode-related interfaces.Herein,we report a back electrode that utilizes atomically dispersed metallic cobalt(Co)in carbon nanosheets(Co_1/CN)to adjust the interfacial energy levels.The electrons in the d-orbitals of Co atoms disrupt the electronic symmetry of the carbon nanosheets(CN),inducing a redistribution of the electronic density of states that leads to a downward shift in the Fermi level and a significantly reduced interfacial energy barrier.As a result,the C-PSCs using Co1/CN as back electrodes achieve a notable PCE of 22.61%with exceptional long-term stability,maintaining 94.4%of their initial efficiency after 1000 h of continuous illumination without encapsulation.This work provides a promising universal method to regulate the energy level of carbon electrodes for C-PSCs and paves the way for more efficient,stable,and scalable solar technologies toward commercialization.展开更多
A theoretical study of the influence of a quasi-electrostatic support on the amplification level of the slow space charge wave(SCW) in the amplification section of a superheterodyne free electron laser(FEL) was carrie...A theoretical study of the influence of a quasi-electrostatic support on the amplification level of the slow space charge wave(SCW) in the amplification section of a superheterodyne free electron laser(FEL) was carried out. One of the ways to significantly increase the saturation level of the slow SCW is maintaining the conditions of a three-wave parametric resonance between the slow, fast SCWs and the resulting pump electric field. This can be done by introducing the quasielectrostatic support in the superheterodyne FEL amplification section. Also, it was found that the generated pump electric field significantly influences the maintenance of parametric resonance conditions. As a result, this increases the saturation level of the slow SCW by 70%. Finally, the quasi-electrostatic support significantly reduces the maximum value of the electrostatic undulator pump field strength, which is necessary to achieve the maximum saturation level of the slow SCW.展开更多
Aqueous zinc-ion batteries encounter enormous challenges such as Zn dendrites and parasitic reactions.Separator modification is a highly effective strategy to address these issues.With the advantages of low cost,nonto...Aqueous zinc-ion batteries encounter enormous challenges such as Zn dendrites and parasitic reactions.Separator modification is a highly effective strategy to address these issues.With the advantages of low cost,nontoxicity,biodegradability,good film-forming ability,superior hydro phi licity,and rich functional groups,chitosan is an ideal matrix for constructing separators.However,the presence of positive charges within chitosan in weakly acidic electrolytes is unfavorable for dendrite inhibition.Herein,Schiff base reaction is introduced to modify chitosan matrix,transforming its charge polarity from positive to negative.Additionally,NbN with excellent zincophilicity is coated onto chitosan matrix,forming a Janus separator with low thickness of 19μm and considerably improved mechanical properties.The resultant separator can promote the transport of Zn^(2+)ions while triggering a repulsive shielding effect against anions,therefore dramatically enhancing Zn^(2+)ion transfer number from 0.28 to 0.49.This separator can also facilitate desolvation process,improve exchange current density,restrict two-dimensional Zn^(2+)ion diffusion,and enhance electrochemical kinetics,contributing to significantly inhibited dendrite growth,by-product formation,and hydrogen evolution.Consequently,stable and reversible Zn stripping/plating process is enabled for over 2500 h at 2 mA cm^(-2)and 2 mAh cm^(-2).And great rate capability and excellent cyclability can be achieved for full batteries even under harsh conditions.This work provides new insights into separator design for Zn-based batteries.展开更多
The present study introduces a screw-pressing charging method to tackle deficiencies in automation and charge uniformity during the melt-casting of polymer-based energetic materials.To ensure the safety of the experim...The present study introduces a screw-pressing charging method to tackle deficiencies in automation and charge uniformity during the melt-casting of polymer-based energetic materials.To ensure the safety of the experiments,this study used inert materials with similar physical properties to partially substitute for the actual energetic components in the preparation of simulant materials.By thoroughly analyzing slurry physical properties,a simulation framework and an extensive performance evaluation method were developed.Such tools guide the design of the structure and configuration of process parameters.Results demonstrate that employing the Pin element significantly enhances radial mixing within the screw,minimizes temperature variations in the slurry,and improves both efficiency and safety in the mixing process.Further,adjustments such as widening the cone angle of the barrel,modifying the solid content of the slurry,and varying the speed of the screw can optimize the mechanical and thermal coupling in the flow field.These adjustments promote higher-quality slurry and create a safer production environment for the extrusion process.展开更多
Oxygen vacancies(Ov)within metal oxide electrodes can enhance mass/charge transfer dynamics in energy storage systems.However,construction of surface Ovoften leads to instability in electrode structure and irreversibl...Oxygen vacancies(Ov)within metal oxide electrodes can enhance mass/charge transfer dynamics in energy storage systems.However,construction of surface Ovoften leads to instability in electrode structure and irreversible electrochemical reactions,posing a significant challenge.To overcome these challenges,atomic heterostructures are employed to address the structural instability and enhance the mass/charge transfer dynamics associated with phase conversion mechanism in aqueous electrodes,Herein,we introduce an atomic S-Bi_(2)O_(3)heterostructure(sulfur(S)anchoring on the surface Ovof Bi_(2)O_(3)).The integration of S within Bi_(2)O_(3)lattice matrix triggers a charge imbala nce at the heterointerfaces,ultimately resulting in the creation of a built-in electric field(BEF).Thus,the BEF attracts OH-ions to be adsorbed onto Bi within the regions of high electron cloud overlap in S-Bi_(2)O_(3),facilitating highly efficient charge transfer.Furthermore,the anchored S plays a pivotal role in preserving structural integrity,thus effectively stabilizing the phase conversion reaction of Bi_(2)O_(3).As a result,the S-Bi_(2)O_(3)electrode achieves72.3 mA h g^(-1)at 10 A g^(-1)as well as high-capacity retention of 81.9%after 1600 cycles.Our innovative SBi_(2)O_(3)design presents a groundbreaking approach for fabricating electrodes that exhibit efficient and stable mass and charge transfer capabilities.Furthermore,it enhances our understanding of the underlying reaction mechanism within energy storage electrodes.展开更多
基金supported from Science and Technology Development Program of Jilin Province(Nos.20240101128JC,20230402058GH)National Natural Science Foundation of China(No.52130101).
文摘Sodium-ion batteries have emerged as competitive substitutes for low-temperature applications due to severe capacity loss and safety concerns of lithium-ion batteries at−20°C or lower.However,the key capability of ultrafast charging at ultralow temperature for SIBs is rarely reported.Herein,a hybrid of Bi nanoparticles embedded in carbon nanorods is demonstrated as an ideal material to address this issue,which is synthesized via a high temperature shock method.Such a hybrid shows an unprecedented rate performance(237.9 mAh g^(−1) at 2 A g^(−1))at−60℃,outperforming all reported SIB anode materials.Coupled with a Na_(3)V_(2)(PO_(4))_(3)cathode,the energy density of the full cell can reach to 181.9 Wh kg^(−1) at−40°C.Based on this work,a novel strategy of high-rate activation is proposed to enhance performances of Bi-based materials in cryogenic conditions by creating new active sites for interfacial reaction under large current.
基金financially supported by the National Natural Science Foundation of China(Grant No.52202328,52372099)the Shanghai Sailing Program(22YF1455500).
文摘Poor Li plating reversibility and high thermal runaway risks are key challenges for fast charging lithiumion batteries with graphite anodes.Herein,a dielectric and fire-resistant separator based on hybrid nanofibers of barium sulfate(BS)and bacterial cellulose(BC)is developed to synchronously enhance the battery's fast charging and thermal-safety performances.The regulation mechanism of the dielectric BS/BC separator in enhancing the Li^(+)ion transport and Li plating reversibility is revealed.(1)The Max-Wagner polarization electric field of the dielectric BS/BC separator can accelerate the desolvation of solvated Li^(+)ions,enhancing their transport kinetics.(2)Moreover,due to the charge balancing effect,the dielectric BS/BC separator homogenizes the electric field/Li^(+)ion flux at the graphite anode-separator interface,facilitating uniform Li plating and suppressing Li dendrite growth.Consequently,the fast-charge graphite anode with the BS/BC separator shows higher Coulombic efficiency(99.0%vs.96.9%)and longer cycling lifespan(100 cycles vs.59 cycles)than that with the polypropylene(PP)separator in the constantlithiation cycling test at 2 mA cm^(-2).The high-loading LiFePO4(15.5 mg cm^(-2))//graphite(7.5 mg cm^(-2))full cell with the BS/BC separator exhibits excellent fast charging performance,retaining 70%of its capacity after 500 cycles at a high rate of 2C,which is significantly better than that of the cell with the PP separator(retaining only 27%of its capacity after 500 cycles).More importantly,the thermally stable BS/BC separator effectively elevates the critical temperature and reduces the heat release rate during thermal runaway,thereby significantly enhancing the battery's safety.
基金supported by the National Natural Science Foundation of China (52075420)the National Key Research and Development Program of China (2020YFB1708400)。
文摘With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair comparison, and performance rationalization of these methods are lacking, due to the scattered existing studies. To address these issues, we develop 20 capacity estimation methods from three perspectives:charging sequence construction, input forms, and ML models. 22,582 charging curves are generated from 44 cells with different battery chemistry and operating conditions to validate the performance. Through comprehensive and unbiased comparison, the long short-term memory(LSTM) based neural network exhibits the best accuracy and robustness. Across all 6503 tested samples, the mean absolute percentage error(MAPE) for capacity estimation using LSTM is 0.61%, with a maximum error of only 3.94%. Even with the addition of 3 m V voltage noise or the extension of sampling intervals to 60 s, the average MAPE remains below 2%. Furthermore, the charging sequences are provided with physical explanations related to battery degradation to enhance confidence in their application. Recommendations for using other competitive methods are also presented. This work provides valuable insights and guidance for estimating battery capacity based on partial charging curves.
基金This work was supported partly by the China Postdoctoral Science Foundation(2023M730201)the Fundamental Research Funds for the Central Universities(2023XKRC027)+1 种基金the Fundamental Research Funds for the 173 project under Grant 2020-JCJQ-ZD-043the project under Grant 22TQ0403ZT07001 and Wei Zhen Limited Liability Company.
文摘Conformable and wire-less charging energy storage devices play important roles in enabling the fast development of wearable,non-contact soft electronics.However,current wire-less charging power sources are still restricted by limited flexural angles and fragile connection of components,resulting in the failure expression of performance and constraining their fur-ther applications in health monitoring wearables and moveable artificial limbs.Herein,we present an ultracompatible skin-like integrated wireless charging micro-supercapacitor,which building blocks(including electrolyte,electrode and substrate)are all evaporated by liquid precursor.Owing to the infiltration and permeation of the liquid,each part of the integrated device attached firmly with each other,forming a compact and all-in-one configuration.In addition,benefitting from the controllable volume of electrode solution precursor,the electrode thickness is easily regulated varying from 11.7 to 112.5μm.This prepared thin IWC-MSC skin can fit well with curving human body,and could be wireless charged to store electricity into high capacitive micro-supercapacitors(11.39 F cm-3)of the integrated device.We believe this work will shed light on the construction of skin-attachable electronics and irregular sensing microrobots.
基金financially supported by National Natural Science Foundation of China (22209133, 22272131, 21972111, 22211540712)Natural Science Foundation of Chongqing (CSTB2022NSCQ-MSX1411)+1 种基金Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and DevicesChongqing Key Laboratory for Advanced Materials and Technologies。
文摘Electrolytic aqueous zinc-manganese(Zn–Mn) batteries have the advantage of high discharge voltage and high capacity due to two-electron reactions. However, the pitfall of electrolytic Zn–Mn batteries is the sluggish deposition reaction kinetics of manganese oxide during the charge process and short cycle life. We show that, incorporating ZnO electrolyte additive can form a neutral and highly viscous gel-like electrolyte and render a new form of electrolytic Zn–Mn batteries with significantly improved charging capabilities. Specifically, the ZnO gel-like electrolyte activates the zinc sulfate hydroxide hydrate assisted Mn^(2+) deposition reaction and induces phase and structure change of the deposited manganese oxide(Zn_(2)Mn_(3)O_8·H_(2)O nanorods array), resulting in a significant enhancement of the charge capability and discharge efficiency. The charge capacity increases to 2.5 mAh cm^(-2) after 1 h constant-voltage charging at 2.0 V vs. Zn/Zn^(2+), and the capacity can retain for up to 2000 cycles with negligible attenuation. This research lays the foundation for the advancement of electrolytic Zn–Mn batteries with enhanced charging capability.
基金supported by the National Natural Science Foundation of China(52177217)。
文摘Typical application scenarios,such as vehicle to grid(V2G)and frequency regulation,have imposed significant long-life demands on lithium-ion batteries.Herein,we propose an advanced battery life-extension method employing bidirectional pulse charging(BPC)strategy.Unlike traditional constant current charging methods,BPC strategy not only achieves comparable charging speeds but also facilitates V2G frequency regulation simultaneously.It significantly enhances battery cycle ampere-hour throughput and demonstrates remarkable life extension capabilities.For this interesting conclusion,adopting model identification and postmortem characterization to reveal the life regulation mechanism of BPC:it mitigates battery capacity loss attributed to loss of lithium-ion inventory(LLI)in graphite anodes by intermittently regulating the overall battery voltage and anode potential using a negative charging current.Then,from the perspective of internal side reaction,the life extension mechanism is further revealed as inhibition of solid electrolyte interphase(SEI)and lithium dendrite growth by regulating voltage with a bidirectional pulse current,and a semi-empirical life degradation model combining SEI and lithium dendrite growth is developed for BPC scenarios health management,the model parameters are identified by genetic algorithm with the life simulation exhibiting an accuracy exceeding 99%.This finding indicates that under typical rate conditions,adaptable BPC strategies can extend the service life of LFP battery by approximately 123%.Consequently,the developed advanced BPC strategy offers innovative perspectives and insights for the development of long-life battery applications in the future.
基金the National Natural Science Foundation of China(Nos.22209095 and 22238004).
文摘Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effectively addresses the aforementioned problems;however,the impact of its quality on lithium-ion transfer and structure durability is yet to be explored.Herein,the influence of an interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time.2D modeling simulation and Cryo-transmission electron microscopy precisely reveal the mitigation of interface polarization owing to a higher fraction of conductive inorganic species formation in bilayer solid electrolyte interphase is mainly responsible for a linear decrease in ionic diffusion energy barrier.Furthermore,atomic force microscopy and Raman shift exhibit substantial stress dissipation generated by a complete conductive network,which is critical to the linear reduction of electrode residual stress.This study provides insights into the rational design of optimized interface SiO-based anodes with reinforced fast-charging performance.
基金supported by the National Natural Scientific Foundation of China (22109083,22379014)Beijing Natural Science Foundation (L233004)。
文摘Fast charging is restricted primarily by the risk of lithium(Li)plating,a side reaction that can lead to the rapid capacity decay and dendrite-induced thermal runaway of lithium-ion batteries(LIBs).Investigation on the intrinsic mechanism and the position of Li plating is crucial to improving the fast rechargeability and safety of LIBs.Herein,we investigate the Li plating behavior in porous electrodes under the restricted transport of Li^(+).Based on the theoretical model,it can be concluded that the Li plating on the anodeseparator interface(ASI)is thermodynamically feasible and kinetically advantageous.Meanwhile,the prior deposition of metal Li on the ASI rather than the anode-current collector interface(ACI)is verified experimentally.In order to facilitate the transfer of Li^(+)among the electrode and improve the utilization of active materials without Li plating,a bilayer asymmetric anode composed of graphite and hard carbon(GH)is proposed.Experimental and simulation results suggest that the GH hybrid electrode homogenizes the lithiated-rate throughout the electrode and outperforms the pure graphite electrode in terms of the rate performance and inhibition of Li plating.This work provides new insights into the behavior of Li plating and the rational design of electrode structure.
基金This work is supported by the National Key R&D Program of China(2021YFB2400400).
文摘The limited energy density of lithium-ion capacitors poses a significant obstacle to their widespread application,primarily stemming from the inability of the electrodes to simultaneously fulfill both high energy density and rapid charging requirements.Experimental data demonstrate that a directional particle configuration can enhance charging speed while maintaining high-capacity density,but it is rarely discussed.Here,we have developed a particle-level electrochemical model capable of reconstructing an electrode with a directional particle configuration.By employing this method,an investigation was conducted to explore how the spatial morphology characteristics of particle configuration impact the energy storage characteristics of electrodes.Results demonstrate that rational particle configuration can effectively enhance the transport of lithium ions and create additional space for lithium-ion storage.With the same particle size distribution,the best electrode can increase the discharge capacity by up to132.4% and increase the charging SOC by 11.3% compared to the ordinary electrode under the condition of 6 C.These findings provide a further understanding of the energy storage mechanism inside the anisotropic particle distribution electrode,which is important for developing high-performance lithium-ion capacitors.
基金supported by the National Natural Science Foundation of China under No. 52177217the Postdoctoral Innovative Talents Support Program under No. BX20240232。
文摘Cell-to-cell variations(CtCV) compromise the electrochemical performance of battery packs, yet the evolutional mechanism and quantitative impacts of CtCV on the pack's fast-charging performance remain unexplored. This knowledge gap is vital for the proliferation of electric vehicles. This study underlies the relationship between CtCV and charging performance by assessing the pack's charge speed, final electric quantity, and temperature consistency. Cell variations and pack status are depicted using 2D parameter diagrams, and an m PnS configured pack model is built upon a decomposed electrode cell model.Variations in three single electric parameters, i.e., capacity(Q), electric quantity(E), and internal resistance(R), and their dual interactions, i.e., E-Q and R-Q, are analyzed carefully. The results indicate that Q variations predominantly affect the final electric quantity of the pack, while R variations impact the charge speed most. With incremental variances in cell parameters, the pack's fast-charging capability first declines linearly and then deteriorates sharply as variations intensify. This research elucidates the correlations between pack charging capabilities and cell variations, providing essential insights for optimizing cell sorting and assembly, battery management design, and charging protocol development for battery packs.
基金funded by the National Natural Science Foundation of China(Grant No.12272217)。
文摘The aging characteristics of lithium-ion battery(LIB)under fast charging is investigated based on an electrochemical-thermal-mechanical(ETM)coupling model.Firstly,the ETM coupling model is established by COMSOL Multiphysics.Subsequently,a long cycle test was conducted to explore the aging characteristics of LIB.Specifically,the effects of charging(C)rate and cycle number on battery aging are analyzed in terms of nonuniform distribution of solid electrolyte interface(SEI),SEI formation,thermal stability and stress characteristics.The results indicate that the increases in C rate and cycling led to an increase in the degree of nonuniform distribution of SEI,and thus a consequent increase in the capacity loss due to the SEI formation.Meanwhile,the increases in C rate and cycle number also led to an increase in the heat generation and a decrease in the heat dissipation rate of the battery,respectively,which result in a decrease in the thermal stability of the electrode materials.In addition,the von Mises stress of the positive electrode material is higher than that of the negative electrode material as the cycling proceeds,with the positive electrode material exhibiting tensile deformation and the negative electrode material exhibiting compressive deformation.The available lithium ion concentration of the positive electrode is lower than that of the negative electrode,proving that the tensile-type fracture occurring in the positive material under long cycling dominated the capacity loss process.The aforementioned studies are helpful for researchers to further explore the aging behavior of LIB under fast charging and take corresponding preventive measures.
基金supported by the National Key Research and Development Plan of China(No.2021YFE0114700)National Natural Science Foundation of China(No.52377145).
文摘Secondary electron emission(SEE)induced by the positive ion is an essential physical process to influence the dynamics of gas discharge which relies on the specific surface material.Surface charging has a significant impact on the material properties,thereby affecting the SEE in the plasma-surface interactions.However,it does not attract enough attention in the previous studies.In this paper,SEE dependent on the charged surface of specific materials is described with the computational method combining a density functional theory(DFT)model from the first-principle theory and the theory of Auger neutralization.The effect ofκ-Al2O3 surface charge,as an example,on the ion-induced secondary electron emission coefficient(SEEC)is investigated by analyzing the defect energy level and band structure on the charged surface.Simulation results indicate that,with the surface charge from negative to positive,the SEEC of a part of low ionization energy ions(such as Ei=12.6 eV)increases first and then decreases,exhibiting a nonlinear changing trend.This is quite different from the monotonic decreasing tendency observed in the previous model which simplifies the electronic structure.This irregular increase of the SEEC can be attributed to the lower escaped probability of orbital energy.The results further illustrate that the excessive charge could cause the bottom of the conduction band close to the valence band,thus leading to the decrease of the orbital energy occupied by the excited electrons.The nonlinear change of SEEC demonstrates a more realistic situation of how the electronic structure of material surface influences the SEE process.This work provides an accurate method of calculating SEEC from specific materials,which is urgent in widespread physical scenarios sensitive to surface materials,such as increasingly growing practical applications concerning plasma-surface interactions.
基金supported in part by the National Natural Science Foundation of China(No.62371233)in part by the Aviation Science Foundation Project(Nos.2022Z024052003,20230058052001)。
文摘Recently,there has been a huge increase in the usage of fuel resources for automobiles which is severely affecting the climate and causing global warming.The use of electric vehicle(EV)is an effective way to protect the environment and reduce travel costs.However,the EV charging system has a single charging source,and the charging rate is limited.In this paper,an EV wireless charging system based on dual source power supply has been developed.It realizes intelligent switching between 12 V photovoltaic output and 220 V AC dual source power,and has wireless transmission function.Based on the proposed power supply architecture,the micro wireless charging model is built,which enables the EV model to store power and realize static and mobile control through the wireless induction charging system.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12374140,12494593,11790312,12004056,11774060,and 92065201)the National Key R&D Program of China(Grant No.2023YFA1406304)+2 种基金the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302803)the Fundamental Research Funds for the Central Universities of China(Grant Nos.2022CDJXY-002 and WK9990000103)the New Cornerstone Science Foundation.
文摘The complex symmetry breaking states in AV3Sb5 family have attracted extreme research attention,but controversy still exists,especially in the question of time reversal symmetry breaking of the charge density wave(CDW).Most recently,a chiral CDW has been suggested in kagome magnet FeGe,but the related study is very rare.Here,we use a scanning tunneling microscope to study the symmetry breaking behavior of both the short-and long-range CDWs in FeGe.Different from previous studies,our study reveals an isotropic long-range CDW without obvious symmetry breaking,while local rotational symmetry breaking appears in the short-range CDW,which may be related to the existence of strong structural disorders.Moreover,the charge distribution of the short-range CDW is inert to the applied external magnetic fields and the detailed spin arrangements of FeGe,inconsistent with the expectation of a chiral CDW associated with chiral flux.Our results rule out the existence of spontaneous chiral and rotational symmetry breaking in the CDW state of FeGe,putting strong constraints on the further understanding of CDW mechanism.
基金supported by MICIU MCIN/AEI/10.13039/501100011033Spain with Grant PID2020-118265GB-C42,-C44,PRTR-C17.I01Generalitat Valenciana,Spain with Grant CIPROM/2022/54,ASFAE/2022/031,CIAPOS/2021/114 and by the EU NextGenerationEU,ESF funds.This work was also supported by the National Science Centre(NCN),Poland(Grant No.2020/39/D/ST2/00466).
文摘The NEutron Detector Array(NEDA)is designed to be coupled to gamma-ray spectrometers to enhance the sensitivity of the setup by enabling reaction channel selection through counting of the evaporated neutrons.This article presents the implementation of a double trigger condition system for NEDA,which improves the acquisition of neutrons and reduces the number of gamma rays acquired.Two independent triggers are generated in the double trigger condition system:one based on charge comparison(CC)and the other on time-of-flight(TOF).These triggers can be combined using OR and AND logic,offering four distinct trigger modes.The developed firmware is added to the previous one in the Virtex 6 field programmable gate array(FPGA)present in the system,which also includes signal processing,baseline correction,and various trigger logic blocks.The performance of the trigger system is evaluated using data from the E703 experiment performed at GANIL.The four trigger modes are applied to the same data,and a subsequent offline analysis is performed.It is shown that most of the detected neutrons are preserved with the AND mode,and the total number of gamma rays is significantly reduced.Compared with the CC trigger mode,the OR trigger mode allows increasing the selection of neutrons.In addition,it is demonstrated that if the OR mode is selected,the online CC trigger threshold can be raised without losing neutrons.
基金supported by the National Natural Science Foundation of China(22109019,52272193)Fundamental Research Funds for the Central Universities(DUT22LAB602,DUT23RC(3)002)。
文摘Carbon-based perovskite solar cells(C-PSCs)exhibit notable stability and durability.However,the power conversion efficiency(PCE)is significantly hindered by energy level mismatches,which result in interfacial charge transport barriers at the electrode-related interfaces.Herein,we report a back electrode that utilizes atomically dispersed metallic cobalt(Co)in carbon nanosheets(Co_1/CN)to adjust the interfacial energy levels.The electrons in the d-orbitals of Co atoms disrupt the electronic symmetry of the carbon nanosheets(CN),inducing a redistribution of the electronic density of states that leads to a downward shift in the Fermi level and a significantly reduced interfacial energy barrier.As a result,the C-PSCs using Co1/CN as back electrodes achieve a notable PCE of 22.61%with exceptional long-term stability,maintaining 94.4%of their initial efficiency after 1000 h of continuous illumination without encapsulation.This work provides a promising universal method to regulate the energy level of carbon electrodes for C-PSCs and paves the way for more efficient,stable,and scalable solar technologies toward commercialization.
文摘A theoretical study of the influence of a quasi-electrostatic support on the amplification level of the slow space charge wave(SCW) in the amplification section of a superheterodyne free electron laser(FEL) was carried out. One of the ways to significantly increase the saturation level of the slow SCW is maintaining the conditions of a three-wave parametric resonance between the slow, fast SCWs and the resulting pump electric field. This can be done by introducing the quasielectrostatic support in the superheterodyne FEL amplification section. Also, it was found that the generated pump electric field significantly influences the maintenance of parametric resonance conditions. As a result, this increases the saturation level of the slow SCW by 70%. Finally, the quasi-electrostatic support significantly reduces the maximum value of the electrostatic undulator pump field strength, which is necessary to achieve the maximum saturation level of the slow SCW.
基金the financial support from the Natural Science Foundation of Jiangsu Province(BK20231292)the Jiangsu Agricultural Science and Technology Innovation Fund(CX(24)3091)+2 种基金the National Natural Science Foundation of China(12464032)the Natural Science Foundation of Jiangxi Province(20232BAB201032)supported by the high performance computing university-level public platform of Jinggangshan University.
文摘Aqueous zinc-ion batteries encounter enormous challenges such as Zn dendrites and parasitic reactions.Separator modification is a highly effective strategy to address these issues.With the advantages of low cost,nontoxicity,biodegradability,good film-forming ability,superior hydro phi licity,and rich functional groups,chitosan is an ideal matrix for constructing separators.However,the presence of positive charges within chitosan in weakly acidic electrolytes is unfavorable for dendrite inhibition.Herein,Schiff base reaction is introduced to modify chitosan matrix,transforming its charge polarity from positive to negative.Additionally,NbN with excellent zincophilicity is coated onto chitosan matrix,forming a Janus separator with low thickness of 19μm and considerably improved mechanical properties.The resultant separator can promote the transport of Zn^(2+)ions while triggering a repulsive shielding effect against anions,therefore dramatically enhancing Zn^(2+)ion transfer number from 0.28 to 0.49.This separator can also facilitate desolvation process,improve exchange current density,restrict two-dimensional Zn^(2+)ion diffusion,and enhance electrochemical kinetics,contributing to significantly inhibited dendrite growth,by-product formation,and hydrogen evolution.Consequently,stable and reversible Zn stripping/plating process is enabled for over 2500 h at 2 mA cm^(-2)and 2 mAh cm^(-2).And great rate capability and excellent cyclability can be achieved for full batteries even under harsh conditions.This work provides new insights into separator design for Zn-based batteries.
基金financially supported by the Fundamental Research Funds for the Central Universities(Grant No.30923011018)。
文摘The present study introduces a screw-pressing charging method to tackle deficiencies in automation and charge uniformity during the melt-casting of polymer-based energetic materials.To ensure the safety of the experiments,this study used inert materials with similar physical properties to partially substitute for the actual energetic components in the preparation of simulant materials.By thoroughly analyzing slurry physical properties,a simulation framework and an extensive performance evaluation method were developed.Such tools guide the design of the structure and configuration of process parameters.Results demonstrate that employing the Pin element significantly enhances radial mixing within the screw,minimizes temperature variations in the slurry,and improves both efficiency and safety in the mixing process.Further,adjustments such as widening the cone angle of the barrel,modifying the solid content of the slurry,and varying the speed of the screw can optimize the mechanical and thermal coupling in the flow field.These adjustments promote higher-quality slurry and create a safer production environment for the extrusion process.
基金supported by the Research Program of Jilin Province Development and Reform Commission(2024C018-6).
文摘Oxygen vacancies(Ov)within metal oxide electrodes can enhance mass/charge transfer dynamics in energy storage systems.However,construction of surface Ovoften leads to instability in electrode structure and irreversible electrochemical reactions,posing a significant challenge.To overcome these challenges,atomic heterostructures are employed to address the structural instability and enhance the mass/charge transfer dynamics associated with phase conversion mechanism in aqueous electrodes,Herein,we introduce an atomic S-Bi_(2)O_(3)heterostructure(sulfur(S)anchoring on the surface Ovof Bi_(2)O_(3)).The integration of S within Bi_(2)O_(3)lattice matrix triggers a charge imbala nce at the heterointerfaces,ultimately resulting in the creation of a built-in electric field(BEF).Thus,the BEF attracts OH-ions to be adsorbed onto Bi within the regions of high electron cloud overlap in S-Bi_(2)O_(3),facilitating highly efficient charge transfer.Furthermore,the anchored S plays a pivotal role in preserving structural integrity,thus effectively stabilizing the phase conversion reaction of Bi_(2)O_(3).As a result,the S-Bi_(2)O_(3)electrode achieves72.3 mA h g^(-1)at 10 A g^(-1)as well as high-capacity retention of 81.9%after 1600 cycles.Our innovative SBi_(2)O_(3)design presents a groundbreaking approach for fabricating electrodes that exhibit efficient and stable mass and charge transfer capabilities.Furthermore,it enhances our understanding of the underlying reaction mechanism within energy storage electrodes.