In view of the high complexity of the objective world, an economic dependence between subsystems(paired and unpaired) is proposed, and then the maintenance cost and time under different economic dependences are formul...In view of the high complexity of the objective world, an economic dependence between subsystems(paired and unpaired) is proposed, and then the maintenance cost and time under different economic dependences are formulated in a simple and consistent manner. Selective maintenance problem under economic dependence(EDSMP) is presented based on a series–parallel system in this paper. A case study shows that the system reliability is promoted to a certain extent, which can validate the validity of the EDSMP model. The influence of the ratio of set-up cost on system performance is mainly discussed under different economic dependences. Several existing improvements of classical exhaust algorithm are further modified to solve a large sized EDSMP rapidly. Experimental results illustrate that these improvements can reduce CPU time significantly.Furthermore the contribution of each improvement is defined here, and then their contributions are compared thoroughly.展开更多
When calculating electromagnetic scattering using method of moments (MoM), integral of the singular term has a significant influence on the results. This paper transforms the singular surface integral to the contour...When calculating electromagnetic scattering using method of moments (MoM), integral of the singular term has a significant influence on the results. This paper transforms the singular surface integral to the contour integral. The integrand is expanded to Taylor series and the integral results in a closed form. The cut-off error is analyzed to show that the series converges fast and only about 2 terms can agree wel with the accurate result. The comparison of the perfect electric conductive (PEC) sphere's bi-static radar cross section (RCS) using MoM and the accurate method validates the feasibility in manipulating the singularity. The error due to the facet size and the cut-off terms of the series are analyzed in examples.展开更多
Deficiencies of applying the traditional least squares support vector machine (LS-SVM) to time series online prediction were specified. According to the kernel function matrix's property and using the recursive cal...Deficiencies of applying the traditional least squares support vector machine (LS-SVM) to time series online prediction were specified. According to the kernel function matrix's property and using the recursive calculation of block matrix, a new time series online prediction algorithm based on improved LS-SVM was proposed. The historical training results were fully utilized and the computing speed of LS-SVM was enhanced. Then, the improved algorithm was applied to timc series online prediction. Based on the operational data provided by the Northwest Power Grid of China, the method was used in the transient stability prediction of electric power system. The results show that, compared with the calculation time of the traditional LS-SVM(75 1 600 ms), that of the proposed method in different time windows is 40-60 ms, proposed method is above 0.8. So the improved method is online prediction. and the prediction accuracy(normalized root mean squared error) of the better than the traditional LS-SVM and more suitable for time series online prediction.展开更多
Singular point(SP)extraction is a key component in automatic fingerprint identification system(AFIS).A new method was proposed for fingerprint singular points extraction,based on orientation tensor field and Laurent s...Singular point(SP)extraction is a key component in automatic fingerprint identification system(AFIS).A new method was proposed for fingerprint singular points extraction,based on orientation tensor field and Laurent series.First,fingerprint orientation flow field was obtained,using the gradient of fingerprint image.With these gradients,fingerprint orientation tensor field was calculated.Then,candidate SPs were detected by the cross-correlation energy in multi-scale Gaussian space.The energy was calculated between fingerprint orientation tensor field and Laurent polynomial model.As a global descriptor,the Laurent polynomial coefficients were allowed for rotational invariance.Furthermore,a support vector machine(SVM)classifier was trained to remove spurious SPs,using cross-correlation coefficient as a feature vector.Finally,experiments were performed on Singular Point Detection Competition 2010(SPD2010)database.Compared to the winner algorithm of SPD2010 which has best accuracy of 31.90%,the accuracy of proposed algorithm is 45.34%.The results show that the proposed method outperforms the state-of-the-art detection algorithms by large margin,and the detection is invariant to rotational transformations.展开更多
Temporal-spatial cross-correlation analysis of non-stationary wind speed time series plays a crucial role in wind field reconstruction as well as in wind pattern recognition.Firstly,the near-surface wind speed time se...Temporal-spatial cross-correlation analysis of non-stationary wind speed time series plays a crucial role in wind field reconstruction as well as in wind pattern recognition.Firstly,the near-surface wind speed time series recorded at different locations are studied using the detrended fluctuation analysis(DFA),and the corresponding scaling exponents are larger than 1.This indicates that all these wind speed time series have non-stationary characteristics.Secondly,concerning this special feature( i.e.,non-stationarity)of wind signals,a cross-correlation analysis method,namely detrended cross-correlation analysis(DCCA) coefficient,is employed to evaluate the temporal-spatial cross-correlations between non-stationary time series of different anemometer pairs.Finally,experiments on ten wind speed data synchronously collected by the ten anemometers with equidistant arrangement illustrate that the method of DCCA cross-correlation coefficient can accurately analyze full-scale temporal-spatial cross-correlation between non-stationary time series and also can easily identify the seasonal component,while three traditional cross-correlation techniques(i.e.,Pearson coefficient,cross-correlation function,and DCCA method) cannot give us these information directly.展开更多
In this paper, we present a cluster-based algorithm for time series outlier mining.We use discrete Fourier transformation (DFT) to transform time series from time domain to frequency domain. Time series thus can be ma...In this paper, we present a cluster-based algorithm for time series outlier mining.We use discrete Fourier transformation (DFT) to transform time series from time domain to frequency domain. Time series thus can be mapped as the points in k -dimensional space.For these points, a cluster-based algorithm is developed to mine the outliers from these points.The algorithm first partitions the input points into disjoint clusters and then prunes the clusters,through judgment that can not contain outliers.Our algorithm has been run in the electrical load time series of one steel enterprise and proved to be effective.展开更多
Target maneuver trajectory prediction is an important prerequisite for air combat situation awareness and maneuver decision-making.However,how to use a large amount of trajectory data generated by air combat confronta...Target maneuver trajectory prediction is an important prerequisite for air combat situation awareness and maneuver decision-making.However,how to use a large amount of trajectory data generated by air combat confrontation training to achieve real-time and accurate prediction of target maneuver trajectory is an urgent problem to be solved.To solve this problem,in this paper,a hybrid algorithm based on transfer learning,online learning,ensemble learning,regularization technology,target maneuvering segmentation point recognition algorithm,and Volterra series,abbreviated as AERTrOS-Volterra is proposed.Firstly,the model makes full use of a large number of trajectory sample data generated by air combat confrontation training,and constructs a Tr-Volterra algorithm framework suitable for air combat target maneuver trajectory prediction,which realizes the extraction of effective information from the historical trajectory data.Secondly,in order to improve the real-time online prediction accuracy and robustness of the prediction model in complex electromagnetic environments,on the basis of the TrVolterra algorithm framework,a robust regularized online Sequential Volterra prediction model is proposed by integrating online learning method,regularization technology and inverse weighting calculation method based on the priori error.Finally,inspired by the preferable performance of models ensemble,ensemble learning scheme is also incorporated into our proposed algorithm,which adaptively updates the ensemble prediction model according to the performance of the model on real-time samples and the recognition results of target maneuvering segmentation points,including the adaptation of model weights;adaptation of parameters;and dynamic inclusion and removal of models.Compared with many existing time series prediction methods,the newly proposed target maneuver trajectory prediction algorithm can fully mine the prior knowledge contained in the historical data to assist the current prediction.The rationality and effectiveness of the proposed algorithm are verified by simulation on three sets of chaotic time series data sets and a set of real target maneuver trajectory data sets.展开更多
Based on the measured displacements,the change laws of the effect of distance in phase space on the deformation of mine lane were analyzed and the chaotic time series model to predict the surrounding rocks deformation...Based on the measured displacements,the change laws of the effect of distance in phase space on the deformation of mine lane were analyzed and the chaotic time series model to predict the surrounding rocks deformation of deep mine lane in soft rock by nonlinear theory and methods was established.The chaotic attractor dimension(D) and the largest Lyapunov index(Emax) were put forward to determine whether the deformation process of mine lane is chaotic and the degree of chaos.The analysis of examples indicates that when D>2 and Emax>0,the surrounding rock's deformation of deep mine lane in soft rock is the chaotic process and the laws of the deformation can still be well demonstrated by the method of the reconstructive state space.Comparing with the prediction of linear time series and grey prediction,the chaotic time series prediction has higher accuracy and the prediction results can provide theoretical basis for reasonable support of mine lane in soft rock.The time of the second support in Maluping Mine of Guizhou,China,is determined to arrange at about 40 d after the initial support according to the prediction results.展开更多
The grey forecasting model has been successfully applied to many fields. However, the precision of GM(1,1) model is not high. In order to remove the seasonal fluctuations in monitoring series before building GM(1,1) m...The grey forecasting model has been successfully applied to many fields. However, the precision of GM(1,1) model is not high. In order to remove the seasonal fluctuations in monitoring series before building GM(1,1) model, the forecasting series of GM(1,1) was built, and an inverse process was used to resume the seasonal fluctuations. Two deseasonalization methods were presented , i.e., seasonal index-based deseasonalization and standard normal distribution-based deseasonalization. They were combined with the GM(1,1) model to form hybrid grey models. A simple but practical method to further improve the forecasting results was also suggested. For comparison, a conventional periodic function model was investigated. The concept and algorithms were tested with four years monthly monitoring data. The results show that on the whole the seasonal index-GM(1,1) model outperform the conventional periodic function model and the conventional periodic function model outperform the SND-GM(1,1) model. The mean Absolute error and mean square error of seasonal index-GM(1,1) are 30.69% and 54.53% smaller than that of conventional periodic function model, respectively. The high accuracy, straightforward and easy implementation natures of the proposed hybrid seasonal index-grey model make it a powerful analysis technique for seasonal monitoring series.展开更多
Time series analysis is a key technology for medical diagnosis,weather forecasting and financial prediction systems.However,missing data frequently occur during data recording,posing a great challenge to data mining t...Time series analysis is a key technology for medical diagnosis,weather forecasting and financial prediction systems.However,missing data frequently occur during data recording,posing a great challenge to data mining tasks.In this study,we propose a novel time series data representation-based denoising autoencoder(DAE)for the reconstruction of missing values.Two data representation methods,namely,recurrence plot(RP)and Gramian angular field(GAF),are used to transform the raw time series to a 2D matrix for establishing the temporal correlations between different time intervals and extracting the structural patterns from the time series.Then an improved DAE is proposed to reconstruct the missing values from the 2D representation of time series.A comprehensive comparison is conducted amongst the different representations on standard datasets.Results show that the 2D representations have a lower reconstruction error than the raw time series,and the RP representation provides the best outcome.This work provides useful insights into the better reconstruction of missing values in time series analysis to considerably improve the reliability of timevarying system.展开更多
Considering chaotic time series multi-step prediction, multi-step direct prediction model based on partial least squares (PLS) is proposed in this article, where PLS, the method for predicting a set of dependent var...Considering chaotic time series multi-step prediction, multi-step direct prediction model based on partial least squares (PLS) is proposed in this article, where PLS, the method for predicting a set of dependent variables forming a large set of predictors, is used to model the dynamic evolution between the space points and the corresponding future points. The model can eliminate error accumulation with the common single-step local model algorithm~ and refrain from the high multi-collinearity problem in the reconstructed state space with the increase of embedding dimension. Simulation predictions are done on the Mackey-Glass chaotic time series with the model. The satisfying prediction accuracy is obtained and the model efficiency verified. In the experiments, the number of extracted components in PLS is set with cross-validation procedure.展开更多
One of the focus views of the uplifting of Tibetan Plateau is the growth history of the plateau. This is an unresolved question because of the poor study in north margin, where the ATF (Altyn Tagh Fault) is acting an ...One of the focus views of the uplifting of Tibetan Plateau is the growth history of the plateau. This is an unresolved question because of the poor study in north margin, where the ATF (Altyn Tagh Fault) is acting an important role in the growth and deformation of the plateau. The fault links two huge contractional belts, e.g. Qilian Nan Shan and West Kunlun, and merges a series of thrusting\|folding arcs in southeast. Mapping of piercing points, such as unconformities between Cenozoic, Mesozoic and Paleozoic strata, and magmatic arcs, shows left slips of ca. 240km and ca. 550km along the middle and western segments of the ATF. About 140~450km of crustal shortening, approximately the same magnitude as the west segment of the ATF, is deduced from balanced sections in West Kunlun foreland thrusting belt. This implies that left\|slip displacement along the west segment of the ATF was absorbed by the contraction in West Kunlun. The ATF system merged bunches of WNW arcuated fold\|fault belts in Qaidam basin, implying anti\|clockwise rotation. Tertiary and some Lower to Middle Pleistocene strata involved in fold\|fault belts, and dip in ESE due to the uplifting of Altyn Tagh. The newest strata involved in the deformation is more and more younger from south to north, that is, from Lower Pliocene to Middle Pleistocene, showing the uplifting trends from south to north in the SE side of the fault.展开更多
基金supported by the National Science Foundation of China (Grant No. 61305083)
文摘In view of the high complexity of the objective world, an economic dependence between subsystems(paired and unpaired) is proposed, and then the maintenance cost and time under different economic dependences are formulated in a simple and consistent manner. Selective maintenance problem under economic dependence(EDSMP) is presented based on a series–parallel system in this paper. A case study shows that the system reliability is promoted to a certain extent, which can validate the validity of the EDSMP model. The influence of the ratio of set-up cost on system performance is mainly discussed under different economic dependences. Several existing improvements of classical exhaust algorithm are further modified to solve a large sized EDSMP rapidly. Experimental results illustrate that these improvements can reduce CPU time significantly.Furthermore the contribution of each improvement is defined here, and then their contributions are compared thoroughly.
基金supported by the National Natural Science Foundationof China for the Youth(51307004)
文摘When calculating electromagnetic scattering using method of moments (MoM), integral of the singular term has a significant influence on the results. This paper transforms the singular surface integral to the contour integral. The integrand is expanded to Taylor series and the integral results in a closed form. The cut-off error is analyzed to show that the series converges fast and only about 2 terms can agree wel with the accurate result. The comparison of the perfect electric conductive (PEC) sphere's bi-static radar cross section (RCS) using MoM and the accurate method validates the feasibility in manipulating the singularity. The error due to the facet size and the cut-off terms of the series are analyzed in examples.
基金Project (SGKJ[200301-16]) supported by the State Grid Cooperation of China
文摘Deficiencies of applying the traditional least squares support vector machine (LS-SVM) to time series online prediction were specified. According to the kernel function matrix's property and using the recursive calculation of block matrix, a new time series online prediction algorithm based on improved LS-SVM was proposed. The historical training results were fully utilized and the computing speed of LS-SVM was enhanced. Then, the improved algorithm was applied to timc series online prediction. Based on the operational data provided by the Northwest Power Grid of China, the method was used in the transient stability prediction of electric power system. The results show that, compared with the calculation time of the traditional LS-SVM(75 1 600 ms), that of the proposed method in different time windows is 40-60 ms, proposed method is above 0.8. So the improved method is online prediction. and the prediction accuracy(normalized root mean squared error) of the better than the traditional LS-SVM and more suitable for time series online prediction.
基金Project(11JJ3080)supported by Natural Science Foundation of Hunan Province,ChinaProject(11CY012)supported by Cultivation in Hunan Colleges and Universities,ChinaProject(ET51007)supported by Youth Talent in Hunan University,China
文摘Singular point(SP)extraction is a key component in automatic fingerprint identification system(AFIS).A new method was proposed for fingerprint singular points extraction,based on orientation tensor field and Laurent series.First,fingerprint orientation flow field was obtained,using the gradient of fingerprint image.With these gradients,fingerprint orientation tensor field was calculated.Then,candidate SPs were detected by the cross-correlation energy in multi-scale Gaussian space.The energy was calculated between fingerprint orientation tensor field and Laurent polynomial model.As a global descriptor,the Laurent polynomial coefficients were allowed for rotational invariance.Furthermore,a support vector machine(SVM)classifier was trained to remove spurious SPs,using cross-correlation coefficient as a feature vector.Finally,experiments were performed on Singular Point Detection Competition 2010(SPD2010)database.Compared to the winner algorithm of SPD2010 which has best accuracy of 31.90%,the accuracy of proposed algorithm is 45.34%.The results show that the proposed method outperforms the state-of-the-art detection algorithms by large margin,and the detection is invariant to rotational transformations.
基金Projects(61271321,61573253,61401303)supported by the National Natural Science Foundation of ChinaProject(14ZCZDSF00025)supported by Tianjin Key Technology Research and Development Program,China+1 种基金Project(13JCYBJC17500)supported by Tianjin Natural Science Foundation,ChinaProject(20120032110068)supported by Doctoral Fund of Ministry of Education of China
文摘Temporal-spatial cross-correlation analysis of non-stationary wind speed time series plays a crucial role in wind field reconstruction as well as in wind pattern recognition.Firstly,the near-surface wind speed time series recorded at different locations are studied using the detrended fluctuation analysis(DFA),and the corresponding scaling exponents are larger than 1.This indicates that all these wind speed time series have non-stationary characteristics.Secondly,concerning this special feature( i.e.,non-stationarity)of wind signals,a cross-correlation analysis method,namely detrended cross-correlation analysis(DCCA) coefficient,is employed to evaluate the temporal-spatial cross-correlations between non-stationary time series of different anemometer pairs.Finally,experiments on ten wind speed data synchronously collected by the ten anemometers with equidistant arrangement illustrate that the method of DCCA cross-correlation coefficient can accurately analyze full-scale temporal-spatial cross-correlation between non-stationary time series and also can easily identify the seasonal component,while three traditional cross-correlation techniques(i.e.,Pearson coefficient,cross-correlation function,and DCCA method) cannot give us these information directly.
文摘In this paper, we present a cluster-based algorithm for time series outlier mining.We use discrete Fourier transformation (DFT) to transform time series from time domain to frequency domain. Time series thus can be mapped as the points in k -dimensional space.For these points, a cluster-based algorithm is developed to mine the outliers from these points.The algorithm first partitions the input points into disjoint clusters and then prunes the clusters,through judgment that can not contain outliers.Our algorithm has been run in the electrical load time series of one steel enterprise and proved to be effective.
基金the support of the Fundamental Research Funds for the Air Force Engineering University under Grant No.XZJK2019040。
文摘Target maneuver trajectory prediction is an important prerequisite for air combat situation awareness and maneuver decision-making.However,how to use a large amount of trajectory data generated by air combat confrontation training to achieve real-time and accurate prediction of target maneuver trajectory is an urgent problem to be solved.To solve this problem,in this paper,a hybrid algorithm based on transfer learning,online learning,ensemble learning,regularization technology,target maneuvering segmentation point recognition algorithm,and Volterra series,abbreviated as AERTrOS-Volterra is proposed.Firstly,the model makes full use of a large number of trajectory sample data generated by air combat confrontation training,and constructs a Tr-Volterra algorithm framework suitable for air combat target maneuver trajectory prediction,which realizes the extraction of effective information from the historical trajectory data.Secondly,in order to improve the real-time online prediction accuracy and robustness of the prediction model in complex electromagnetic environments,on the basis of the TrVolterra algorithm framework,a robust regularized online Sequential Volterra prediction model is proposed by integrating online learning method,regularization technology and inverse weighting calculation method based on the priori error.Finally,inspired by the preferable performance of models ensemble,ensemble learning scheme is also incorporated into our proposed algorithm,which adaptively updates the ensemble prediction model according to the performance of the model on real-time samples and the recognition results of target maneuvering segmentation points,including the adaptation of model weights;adaptation of parameters;and dynamic inclusion and removal of models.Compared with many existing time series prediction methods,the newly proposed target maneuver trajectory prediction algorithm can fully mine the prior knowledge contained in the historical data to assist the current prediction.The rationality and effectiveness of the proposed algorithm are verified by simulation on three sets of chaotic time series data sets and a set of real target maneuver trajectory data sets.
基金Project(50490274) supported by the National Natural Science Foundation of China
文摘Based on the measured displacements,the change laws of the effect of distance in phase space on the deformation of mine lane were analyzed and the chaotic time series model to predict the surrounding rocks deformation of deep mine lane in soft rock by nonlinear theory and methods was established.The chaotic attractor dimension(D) and the largest Lyapunov index(Emax) were put forward to determine whether the deformation process of mine lane is chaotic and the degree of chaos.The analysis of examples indicates that when D>2 and Emax>0,the surrounding rock's deformation of deep mine lane in soft rock is the chaotic process and the laws of the deformation can still be well demonstrated by the method of the reconstructive state space.Comparing with the prediction of linear time series and grey prediction,the chaotic time series prediction has higher accuracy and the prediction results can provide theoretical basis for reasonable support of mine lane in soft rock.The time of the second support in Maluping Mine of Guizhou,China,is determined to arrange at about 40 d after the initial support according to the prediction results.
文摘The grey forecasting model has been successfully applied to many fields. However, the precision of GM(1,1) model is not high. In order to remove the seasonal fluctuations in monitoring series before building GM(1,1) model, the forecasting series of GM(1,1) was built, and an inverse process was used to resume the seasonal fluctuations. Two deseasonalization methods were presented , i.e., seasonal index-based deseasonalization and standard normal distribution-based deseasonalization. They were combined with the GM(1,1) model to form hybrid grey models. A simple but practical method to further improve the forecasting results was also suggested. For comparison, a conventional periodic function model was investigated. The concept and algorithms were tested with four years monthly monitoring data. The results show that on the whole the seasonal index-GM(1,1) model outperform the conventional periodic function model and the conventional periodic function model outperform the SND-GM(1,1) model. The mean Absolute error and mean square error of seasonal index-GM(1,1) are 30.69% and 54.53% smaller than that of conventional periodic function model, respectively. The high accuracy, straightforward and easy implementation natures of the proposed hybrid seasonal index-grey model make it a powerful analysis technique for seasonal monitoring series.
文摘Time series analysis is a key technology for medical diagnosis,weather forecasting and financial prediction systems.However,missing data frequently occur during data recording,posing a great challenge to data mining tasks.In this study,we propose a novel time series data representation-based denoising autoencoder(DAE)for the reconstruction of missing values.Two data representation methods,namely,recurrence plot(RP)and Gramian angular field(GAF),are used to transform the raw time series to a 2D matrix for establishing the temporal correlations between different time intervals and extracting the structural patterns from the time series.Then an improved DAE is proposed to reconstruct the missing values from the 2D representation of time series.A comprehensive comparison is conducted amongst the different representations on standard datasets.Results show that the 2D representations have a lower reconstruction error than the raw time series,and the RP representation provides the best outcome.This work provides useful insights into the better reconstruction of missing values in time series analysis to considerably improve the reliability of timevarying system.
文摘Considering chaotic time series multi-step prediction, multi-step direct prediction model based on partial least squares (PLS) is proposed in this article, where PLS, the method for predicting a set of dependent variables forming a large set of predictors, is used to model the dynamic evolution between the space points and the corresponding future points. The model can eliminate error accumulation with the common single-step local model algorithm~ and refrain from the high multi-collinearity problem in the reconstructed state space with the increase of embedding dimension. Simulation predictions are done on the Mackey-Glass chaotic time series with the model. The satisfying prediction accuracy is obtained and the model efficiency verified. In the experiments, the number of extracted components in PLS is set with cross-validation procedure.
文摘One of the focus views of the uplifting of Tibetan Plateau is the growth history of the plateau. This is an unresolved question because of the poor study in north margin, where the ATF (Altyn Tagh Fault) is acting an important role in the growth and deformation of the plateau. The fault links two huge contractional belts, e.g. Qilian Nan Shan and West Kunlun, and merges a series of thrusting\|folding arcs in southeast. Mapping of piercing points, such as unconformities between Cenozoic, Mesozoic and Paleozoic strata, and magmatic arcs, shows left slips of ca. 240km and ca. 550km along the middle and western segments of the ATF. About 140~450km of crustal shortening, approximately the same magnitude as the west segment of the ATF, is deduced from balanced sections in West Kunlun foreland thrusting belt. This implies that left\|slip displacement along the west segment of the ATF was absorbed by the contraction in West Kunlun. The ATF system merged bunches of WNW arcuated fold\|fault belts in Qaidam basin, implying anti\|clockwise rotation. Tertiary and some Lower to Middle Pleistocene strata involved in fold\|fault belts, and dip in ESE due to the uplifting of Altyn Tagh. The newest strata involved in the deformation is more and more younger from south to north, that is, from Lower Pliocene to Middle Pleistocene, showing the uplifting trends from south to north in the SE side of the fault.