期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
回归支持向量机SMO算法的改进 被引量:3
1
作者 许建潮 张玉石 《计算机工程与应用》 CSCD 北大核心 2007年第17期74-76,共3页
在Smola和Sch$lkopf的SMO算法中,由于使用了单一的极限值而使得算法的效果没有完全表现出来。使用KKT条件来检验二次规划问题,使用两个极限参量来对回归SMO算法进行改进。通过对比实验,这一改进算法在执行速度上表现出了非常好的性能。
关键词 支持向量机 回归 序列最小优化
在线阅读 下载PDF
基于SMO算法的织物组织结构识别 被引量:1
2
作者 任海军 孙瑞志 宋强 《计算机工程与设计》 CSCD 北大核心 2009年第22期5178-5181,共4页
提出了一种用机器识别布料结构的方法。该方法采用图像去噪、增强及二值化技术对织物组织图进行预处理,采用经纬像素差值法提取出织物组织结构的特征向量,用序列最小化(SMO)算法进行识别分类,重构出清晰的、便于生产加工的织物组织结构... 提出了一种用机器识别布料结构的方法。该方法采用图像去噪、增强及二值化技术对织物组织图进行预处理,采用经纬像素差值法提取出织物组织结构的特征向量,用序列最小化(SMO)算法进行识别分类,重构出清晰的、便于生产加工的织物组织结构图。实验结果表明,通过该方法对织物组织结构的识别具有较高的准确率。 展开更多
关键词 织物组织结构 模式识别 序列最小化 支持向量机 特征向量
在线阅读 下载PDF
基于SMO的层次型1-FSVM算法 被引量:3
3
作者 左萍平 孙赟 +1 位作者 顾弘 齐冬莲 《计算机工程》 CAS CSCD 北大核心 2010年第19期188-189,192,共3页
针对序贯最小优化(SMO)训练算法具有计算速度快、无内负荷的特点,将其移植到模糊一类支持向量机(1-FSVM)中。1-FSVM算法融入层次型偏二叉树结构进行逐步聚类以加快训练速度,并对每个输入向量赋予不同权值以达到准确的分类效果。应用于... 针对序贯最小优化(SMO)训练算法具有计算速度快、无内负荷的特点,将其移植到模糊一类支持向量机(1-FSVM)中。1-FSVM算法融入层次型偏二叉树结构进行逐步聚类以加快训练速度,并对每个输入向量赋予不同权值以达到准确的分类效果。应用于光识别手写数字集和车牌定位的结果表明,1-FSVM算法具有较高的检测率与较快的检测速度。 展开更多
关键词 模糊一类支持向量机 序贯最小优化 层次型
在线阅读 下载PDF
基于SMO-SVM的单点金刚笔钝化监测
4
作者 岳泰 李郝林 迟玉伦 《中国机械工程》 EI CAS CSCD 北大核心 2015年第20期2733-2739,共7页
针对单点金刚笔在砂轮修整过程中易于钝化且难以检测的问题,使用支持向量机建立智能模型。为了得到建立模型所需的样本库,使用小波包分析等方法在线提取修整时声发射信号中的特征信息,并引入钝化平台直径定义钝化临界值。模型本身选用... 针对单点金刚笔在砂轮修整过程中易于钝化且难以检测的问题,使用支持向量机建立智能模型。为了得到建立模型所需的样本库,使用小波包分析等方法在线提取修整时声发射信号中的特征信息,并引入钝化平台直径定义钝化临界值。模型本身选用基于串行优化算法的支持向量分类机,使用交叉验证法搭配遗传算法以达到优化模型参数的目的。实验结果表明,该模型在分类精度和计算时间上均优于一般的智能模型,可以有效地监测金刚笔的钝化。 展开更多
关键词 单点金刚笔 支持向量分类机 声发射信号 串行优化算法 钝化平台直径
在线阅读 下载PDF
基于不同惩罚系数的SMO改进算法
5
作者 田大东 邓伟 《计算机应用》 CSCD 北大核心 2008年第9期2369-2370,2374,共3页
为了解决Keerthi改进的序贯最小优化(SMO)算法在处理非平衡数据集时,整体分类性能较低、稳定性差等问题,对两个类别施加不同的惩罚系数的方法对算法作进一步改进,同时给出计算公式及算法步骤。实验结果表明,该算法不但提高了处理非平衡... 为了解决Keerthi改进的序贯最小优化(SMO)算法在处理非平衡数据集时,整体分类性能较低、稳定性差等问题,对两个类别施加不同的惩罚系数的方法对算法作进一步改进,同时给出计算公式及算法步骤。实验结果表明,该算法不但提高了处理非平衡数据集的能力,也进一步提高了其稳定性。 展开更多
关键词 非平衡数据集 惩罚系数 序贯最小优化
在线阅读 下载PDF
基于改进停机准则的SMO算法
6
作者 韩顺成 马小晴 +1 位作者 陈进东 潘丰 《计算机工程与应用》 CSCD 2014年第16期31-34,61,共5页
在序列最小优化(Sequential Minimal Optimization,SMO)算法训练过程中,采用标准的KKT(Karush-KuhnTucker)条件作为停机准则会导致训练后期速度下降。由最优化理论可知,当对偶间隙为零时,凸二次优化问题同样可以取得全局最优解。因此本... 在序列最小优化(Sequential Minimal Optimization,SMO)算法训练过程中,采用标准的KKT(Karush-KuhnTucker)条件作为停机准则会导致训练后期速度下降。由最优化理论可知,当对偶间隙为零时,凸二次优化问题同样可以取得全局最优解。因此本文将对偶间隙与标准KKT条件同时作为SMO算法的停机准则,从而提出了改进停机准则的SMO算法。在保证训练精度的情况下,提高了SMO算法的训练速度。通过对一维和二维函数的两个仿真实验,验证了改进SMO算法的有效性。 展开更多
关键词 支持向量机回归 序列最小优化算法 对偶间隙 KKT条件 停机准则
在线阅读 下载PDF
回归支持向量机的改进序列最小优化学习算法 被引量:32
7
作者 张浩然 韩正之 《软件学报》 EI CSCD 北大核心 2003年第12期2006-2013,共8页
支持向量机(support vector machine,简称SVM)是一种基于结构风险最小化原理的学习技术,也是一种新的具有很好泛化性能的回归方法,提出了实现回归支持向量机的一种改进的SMO(sequential minimal optimization)算法,给出了两变量子优化... 支持向量机(support vector machine,简称SVM)是一种基于结构风险最小化原理的学习技术,也是一种新的具有很好泛化性能的回归方法,提出了实现回归支持向量机的一种改进的SMO(sequential minimal optimization)算法,给出了两变量子优化问题的解析解,设计了新的工作集选择方法和停止条件,仿真实例说明,所提出的SMO算法比原始SMO算法具有更快的运算速度. 展开更多
关键词 支持向量机 核方法 回归 序列最小优化
在线阅读 下载PDF
微博演化网络的负信息分类方法 被引量:13
8
作者 赵一 何克清 +1 位作者 李昭 黄贻望 《计算机科学与探索》 CSCD 北大核心 2017年第1期91-98,共8页
针对Sina微博博文的转发关系,建立起用户转发博文之间的演化网络,从而利用SMO SVM(sequential minimal optimization support vector machine)分类算法对博文进行分类,筛选出恶意博文、垃圾广告、垃圾营销信息,使用户能够精确地屏蔽不... 针对Sina微博博文的转发关系,建立起用户转发博文之间的演化网络,从而利用SMO SVM(sequential minimal optimization support vector machine)分类算法对博文进行分类,筛选出恶意博文、垃圾广告、垃圾营销信息,使用户能够精确地屏蔽不想要的博文和博主。第一步基于微博转发关系的演化网络和SVM分类算法对整个Sina微博进行分类;第二步利用复杂网络等技术对经常发送恶意广告的博主进行标注,从而在网络中对他们进行屏蔽;最后找出垃圾信息的来源以及分辨出博主是不是恶意转发者,在宏观上能更好地遏制垃圾信息的传播。与用户从UCI数据集中实际反馈情况进行比较,实验结果表明,机器学习分类的实验结果吻合度达到89%。 展开更多
关键词 序列最小优化(smo) 支持向量机(SVM) 演化网络 UCI数据集 负信息
在线阅读 下载PDF
一种SVM验证码识别算法 被引量:19
9
作者 殷光 陶亮 《计算机工程与应用》 CSCD 北大核心 2011年第18期188-190,194,共4页
设计验证码的主要目的是区分人类和计算机,用来防止网络机器人的一些恶意行为。验证码的出现也催生了一批新工种,电子商务的发展迫切需要一种推广方式来推销他们的商品,残障人士上网问题也需要迫切关注,因此许多人开始研究网络机器人技... 设计验证码的主要目的是区分人类和计算机,用来防止网络机器人的一些恶意行为。验证码的出现也催生了一批新工种,电子商务的发展迫切需要一种推广方式来推销他们的商品,残障人士上网问题也需要迫切关注,因此许多人开始研究网络机器人技术,用来实现邮箱自动注册、群发信息、自动灌水、自动登录等功能。目前,各种类型网站系统都利用验证码阻止网络机器人入侵,从而验证码识别技术成为研究热点。基于SVM技术对图像验证码进行识别,取得了良好的效果。 展开更多
关键词 支持向量机 序贯最小化算法 选择工作集 核函数 多类分类 验证码识别
在线阅读 下载PDF
基于边界矩和支持向量机的火焰识别算法 被引量:4
10
作者 韩斌 黄刚 王士同 《计算机应用研究》 CSCD 北大核心 2009年第7期2765-2766,2770,共3页
根据火焰的燃烧特性,结合火焰的空间形状特征和动态变化特征,设计了一种基于动态边界矩和支持向量机的火焰识别算法。利用相邻帧边界矩不变量的差值来描述火焰的动态特征,基于支持向量机对火焰和疑似火焰目标样本进行分类检测。实验表明... 根据火焰的燃烧特性,结合火焰的空间形状特征和动态变化特征,设计了一种基于动态边界矩和支持向量机的火焰识别算法。利用相邻帧边界矩不变量的差值来描述火焰的动态特征,基于支持向量机对火焰和疑似火焰目标样本进行分类检测。实验表明,该算法具有较好的火焰目标识别性能、较低的虚警率和较强的抗干扰性能。 展开更多
关键词 火焰识别 边界矩不变量 支持向量机 序列最小最优化算法
在线阅读 下载PDF
可行方向SUMT外点法的研究及应用 被引量:5
11
作者 龙腾 刘莉 +1 位作者 李怀建 杜小菁 《系统工程与电子技术》 EI CSCD 北大核心 2011年第3期685-689,共5页
针对序列无约束极小化技术(sequential unconstrained minimization technology,SUMT)外点法中由于设计变量越界而导致优化失败的问题,分析了设计变量越界的原因,将SUMT外点法和可行方向法相结合,提出了一种可行方向SUMT(feasible direc... 针对序列无约束极小化技术(sequential unconstrained minimization technology,SUMT)外点法中由于设计变量越界而导致优化失败的问题,分析了设计变量越界的原因,将SUMT外点法和可行方向法相结合,提出了一种可行方向SUMT(feasible direction SUMT,FD-SUMT)外点法。用可行方向法的思想处理设计变量的约束,将搜索空间限定在设计变量可行域内。与传统的SUMT外点法相比,该方法除实现简单外,更具有鲁棒性高、收敛快等优点。通过数值算例和工程应用实例验证了FD-SUMT外点法的性能。优化结果表明,该方法消除了设计变量越界的情况,收敛速度和鲁棒性明显高于传统的SUMT外点法,而且初值选取容易,具有工程实用性。 展开更多
关键词 序列无约束极小化技术外点法 可行方向 可行域 优化
在线阅读 下载PDF
基于支持向量机的人眼检测 被引量:6
12
作者 胡涛 王家乐 《计算机工程与应用》 CSCD 北大核心 2008年第24期188-190,共3页
人眼检测是计算机人脸识别的重要部分。复杂环境下人眼定位容易受到光照以及人不同姿态的影响。为了解决复杂环境下的人眼定位问题,采用基于支持向量机的人眼检测算法,首先对复杂环境下采集的不同人的人眼样本进行灰度化均衡以及小波变... 人眼检测是计算机人脸识别的重要部分。复杂环境下人眼定位容易受到光照以及人不同姿态的影响。为了解决复杂环境下的人眼定位问题,采用基于支持向量机的人眼检测算法,首先对复杂环境下采集的不同人的人眼样本进行灰度化均衡以及小波变换,将变换结果表示成向量形式,运用序贯最小优化算法进行训练,得到一组支持向量,然后遍历待检测人脸图利用支持向量所构成的分类器进行人眼初检,最后根据先验知识完成信息融合,最终标定人眼。实验结果表明,该算法对各种复杂环境下的含人眼图像有普遍的适应性和有效性。 展开更多
关键词 人眼检测 支持向量机 序贯最小优化
在线阅读 下载PDF
基于作用集的一类支持向量机递推式训练算法 被引量:3
13
作者 徐磊 赵光宙 顾弘 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2009年第1期42-46,共5页
为了求解一类支持向量机(1-SVM)的二次规划问题(QPP),利用该QPP的稀疏解集性质,提出了基于作用集的1-SVM递推式训练算法.将支持向量集设定为作用集,迭代地局部优化作用集以获得全局最优解,并引进递推式算法降低计算复杂度。不同于序贯... 为了求解一类支持向量机(1-SVM)的二次规划问题(QPP),利用该QPP的稀疏解集性质,提出了基于作用集的1-SVM递推式训练算法.将支持向量集设定为作用集,迭代地局部优化作用集以获得全局最优解,并引进递推式算法降低计算复杂度。不同于序贯最小优化(SMO)收敛目标函数的思路,该算法寻找支持向量在最优状态下的分布,对Karush-Kuhn-Tucker(KKT)条件不敏感,并可获得解析的最优值。仿真结果表明,本算法在计算时间和精度上均优于SMO,可有效地应用于1-SVM的大样本学习。 展开更多
关键词 一类支持向量机 作用集法 二次规划问题 序贯最小优化
在线阅读 下载PDF
基于对偶随机投影的线性核支持向量机 被引量:1
14
作者 席茜 张凤琴 +3 位作者 李小青 管桦 陈桂茸 王梦非 《计算机应用》 CSCD 北大核心 2017年第6期1680-1685,共6页
针对大型支持向量机(SVM)经随机投影特征降维后分类精度下降的问题,结合对偶恢复理论,提出了面向大规模分类问题的基于对偶随机投影的线性核支持向量机(drp-LSVM)。首先,分析论证了drp-LSVM相关几何性质,证明了在保持与基于随机投影降... 针对大型支持向量机(SVM)经随机投影特征降维后分类精度下降的问题,结合对偶恢复理论,提出了面向大规模分类问题的基于对偶随机投影的线性核支持向量机(drp-LSVM)。首先,分析论证了drp-LSVM相关几何性质,证明了在保持与基于随机投影降维的支持向量机(rp-LSVM)相近几何优势的同时,其划分超平面更接近于用全部数据训练得到的原始分类器。然后,针对提出的drp-LSVM快速求解问题,改进了传统的序列最小优化(SMO)算法,设计了基于改进SMO算法的drp-LSVM分类器。最后实验结果表明,drp-LSVM在继承rp-LSVM优点的同时,减小了分类误差,提高了训练精度,并且各项性能评价更接近于用原始数据训练得到的分类器;设计的基于改进SMO算法的分类器不但可以减少内存消耗,同时可以拥有较高的训练精度。 展开更多
关键词 机器学习 支持向量机 随机投影 序列最小优化算法 降维
在线阅读 下载PDF
基于支持向量回归模型的电力系统谐波分析新方法 被引量:2
15
作者 刘尚伟 吴玲 《中国电力》 CSCD 北大核心 2007年第6期32-35,共4页
当前电力系统中的谐波问题日益严重,对谐波的准确检测和分析是抑制谐波畸变的重要依据。将基于改进的SMO算法的支持向量回归模型应用于电力系统谐波的检测,该算法克服了常规算法计算规模大和建模复杂的困难,通过引入一个中间因子,将原... 当前电力系统中的谐波问题日益严重,对谐波的准确检测和分析是抑制谐波畸变的重要依据。将基于改进的SMO算法的支持向量回归模型应用于电力系统谐波的检测,该算法克服了常规算法计算规模大和建模复杂的困难,通过引入一个中间因子,将原来问题的计算规模减半,并利用迭代算法求解中间因子,使得该算法简单可行。对三相桥式整流电路交流侧产生的特征谐波和非特征谐波电流进行了分析,仿真结果通过与FFT算法和ADALINE神经网络的检测分析结果对比,表明该方法无论是在理想情况下还是在考虑了各种影响因素的情况下,都具有很高的检测精度,可以满足电力系统的谐波分析的要求。该方法的不足之处是计算量会随着输入量分辨率的提高而增大。 展开更多
关键词 谐波分析 支持向量回归 结构风险最小化 泛化能力 序列最小最优化算法
在线阅读 下载PDF
HSMC-SVM的二次逼近快速训练算法 被引量:2
16
作者 徐图 罗瑜 何大可 《电子与信息学报》 EI CSCD 北大核心 2008年第11期2746-2749,共4页
HSMC-SVM是一种直接型高速多类支持向量机,适合用于类别较多的分类场合,但由于SMO算法采用经验方法选择工作集,使得在用SMO算法训练HSMC-SVM时,收敛速度较慢。为提高HSMC-SVM的收敛速度,该文提出用基于二次逼近的可行方向法来训练HSMC-S... HSMC-SVM是一种直接型高速多类支持向量机,适合用于类别较多的分类场合,但由于SMO算法采用经验方法选择工作集,使得在用SMO算法训练HSMC-SVM时,收敛速度较慢。为提高HSMC-SVM的收敛速度,该文提出用基于二次逼近的可行方向法来训练HSMC-SVM,并使用了样本缩减策略。实验表明,这种方法可以有效提高HSMC-SVM的收敛速度,其收敛速度已经超过了基于libsvm的组合多类支持向量机,完全可以用于分类类别多、样本数量大的分类场合。 展开更多
关键词 超球体多类支持向量机 smo训练算法 工作集选择:二次逼近
在线阅读 下载PDF
求解双边加权模糊支持向量机的序贯最小优化算法
17
作者 李艳 杨晓伟 《计算机应用》 CSCD 北大核心 2011年第12期3297-3301,3317,共6页
高的计算复杂度限制了双边加权模糊支持向量机在实际分类问题中的应用。为了降低计算复杂度,提出了应用序贯最小优化算法(SMO)解该模型,该模型首先将整个二次规划问题分解成一系列规模为2的二次规划子问题,然后求解这些二次规划子问题... 高的计算复杂度限制了双边加权模糊支持向量机在实际分类问题中的应用。为了降低计算复杂度,提出了应用序贯最小优化算法(SMO)解该模型,该模型首先将整个二次规划问题分解成一系列规模为2的二次规划子问题,然后求解这些二次规划子问题。为了测试SMO算法的性能,在三个真实数据集和两个人工数据集上进行了数值实验。结果表明:与传统的内点算法相比,在不损失测试精度的情况下,SMO算法明显地降低了模型的计算复杂度,使其在实际中的应用成为可能。 展开更多
关键词 序贯最小优化 双边加权模糊支持向量机 支持向量机 模糊支持向量机
在线阅读 下载PDF
一类支持向量机的快速增量学习方法 被引量:6
18
作者 王洪波 赵光宙 +1 位作者 齐冬莲 卢达 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2012年第7期1327-1332,共6页
提出一类支持向量机(OCSVM)的快速增量学习方法.在OCSVM初始分类器的基础上,添加一个德尔塔函数形成新的决策函数,实现增量学习的过程.通过分析德尔塔函数的几何特性,构造出与OCSVM相似的优化目标函数,从而求解德尔塔函数的参数.优化问... 提出一类支持向量机(OCSVM)的快速增量学习方法.在OCSVM初始分类器的基础上,添加一个德尔塔函数形成新的决策函数,实现增量学习的过程.通过分析德尔塔函数的几何特性,构造出与OCSVM相似的优化目标函数,从而求解德尔塔函数的参数.优化问题能够进一步转化为标准的二次规划(QP)问题,但是在优化过程中Karush-Kuhn-Tucker(KKT)条件发生很大改变.根据新的KKT条件,为QPP提出修正的序贯最小优化(SMO)求解方法.整个学习过程直接操作初始分类器,仅仅训练新增样本,避免了对初始样本的重复训练,因此能够节约大量的学习时间和存储空间.实验结果表明,提出的快速增量学习方法在时间和精度上均优于其他的增量学习方法. 展开更多
关键词 一类支持向量机 增量学习 德尔塔函数 二次规划 序贯最小优化(smo) KKT条件
在线阅读 下载PDF
一种基于SVM算法的垃圾邮件过滤方法 被引量:5
19
作者 范婕婷 赖惠成 《计算机工程与应用》 CSCD 北大核心 2008年第28期95-97,145,共4页
基于邮件内容的过滤是当前解决垃圾邮件问题的主流技术之一。针对垃圾邮件过滤本质是分类问题,提出了一种基于支持向量机对垃圾邮件过滤的方法,并且将SMO分类算法结合到垃圾邮件分类中。通过实验,SMO算法能够取得较好的分类效果,缩短了... 基于邮件内容的过滤是当前解决垃圾邮件问题的主流技术之一。针对垃圾邮件过滤本质是分类问题,提出了一种基于支持向量机对垃圾邮件过滤的方法,并且将SMO分类算法结合到垃圾邮件分类中。通过实验,SMO算法能够取得较好的分类效果,缩短了支持向量机分类器的分类时间。 展开更多
关键词 垃圾邮件 支持向量机 序列最小优化算法 分类时间
在线阅读 下载PDF
训练支持向量机的并行序列最小优化方法 被引量:4
20
作者 曹丽娟 王小明 《计算机工程》 CAS CSCD 北大核心 2007年第18期184-186,共3页
序列最小优化(SMO)是训练支持向量机(SVM)的常见算法,在求解大规模问题时,需要耗费大量的计算时间。该文提出了SMO的一种并行实现方法,验证了该算法的有效性。实验结果表明,当采用多处理器时,并行SMO具有较大的加速比。
关键词 支持向量机 序列最小优化 并行算法
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部