To investigate the mechanisms of apigenin(API)and proanthocyanidins(PC)in soothing sensitive skin(SS),a mast cell degranulation model was established by stimulating RBL-2H3 cells with the calcium ionophore A23187.Base...To investigate the mechanisms of apigenin(API)and proanthocyanidins(PC)in soothing sensitive skin(SS),a mast cell degranulation model was established by stimulating RBL-2H3 cells with the calcium ionophore A23187.Based on the combinatorial experiments,it was found that when API and PC were combined at the molar ratios of 4∶1 and 2∶1,they exhibited the antagonistic effects on histamine release(combination index CI>1);when they are combined at the molar ratios of 1∶1,1∶2 or 1∶4,they showed the synergistic effects on histamine release(CI<1).Among them,the combination of API and PC at a molar ratio of 1∶1 showed the better potent synergistic antihistamine release effect(CI=0.70).Histamine is a hallmark of the mast cell degranulation,consequently,the combination of API and PC at a molar ratio of 1∶1 yields the better efficiency in inhibiting the mast cell degranulation with the lowest IC_(50)value.Compared to the utilization of API or PC alone,the IC_(50)value was reduced by 11.150 and 6.503μmol/L,respectively.Compared to the positive control paeonol(PA),the treatment with the combination significantly reduced theβ-hex secretion,decreased the F-actin cytoskeleton rearrangement,and markedly suppressed the release of TNF-α,IL-4,and MCP-1.Further studies on the signaling pathways related to the mast cell degranulation indicated that the combination effectively inhibited the intracellular Ca^(2+)influx and significantly suppressed the phosphorylation of calmodulin-dependent protein kinase(CaMK)and phospholipase C/protein kinase C(PLC/PKC).In summary,the combination of API and PC at a molar ratio of 1∶1 exhibited the better synergistic antagonistic effect on the histamine release,inhibited the mast cell degranulation model activation by reducing Ca^(2+)influx and inhibiting the activation of Ca^(2+)/CaMK and PLC/PKC pathways,stabilized the cell membranes,regulated the inflammatory factor secretion,and exerted an effect in alleviating sensitive skin.展开更多
The effect of hot deformation on the quench sensitivity of the 7085 alloy was studied through hardness testing and microstructure characterization.The findings indicate that hot deformation enhances the quench sensiti...The effect of hot deformation on the quench sensitivity of the 7085 alloy was studied through hardness testing and microstructure characterization.The findings indicate that hot deformation enhances the quench sensitivity of the 7085 alloy,with the hardness difference between water quenching and air cooling increasing from 5.4%(before hot deformation)to 10.4%(after hot deformation).In the undeformed samples,the Al3Zr particles within the grains exhibit better coherent with the Al matrix.During slow quenching,only theηphase is observed on Al3Zr particles and at the grain boundaries.Hot deformation leads to a mass of recrystallization and the formation of subgrains with high dislocation density.This results in an increase in the types,quantities,and sizes of heterogeneous precipitates during quenching.In the slow quenching process,high angle grain boundaries are best for the nucleation and growth of theηphase.Secondly,a substantial quantity ofηand T phases precipitate on the non-coherent Al3Zr phase within the recrystallized grains.The locations with high dislocation density subgrains(boundaries)serve as nucleation positions for theηand T phases precipitating.Additionally,the Y phase is observed to precipitate at dislocation sites within the subgrains.展开更多
The primary concern in stealth aircraft design is the very large electrical size objects.However,the computational and storage requirements of these objects present significant obstacles for current highfidelity desig...The primary concern in stealth aircraft design is the very large electrical size objects.However,the computational and storage requirements of these objects present significant obstacles for current highfidelity design methods,particularly when addressing high-dimensional complex engineering design problems.To address these challenges,we developed a surface sensitivity technique based on the multilevel fast multipole algorithm(MLFMA).An access and storage of sparse partial derivative tensor was improved to significantly enhanced the computation performance.The far-field interactions of the surface sensitivity equation were realized by differential the multipole expansion.In addition,we proposed a fast far-field multiplication method to accelerate the multiplication process.The surface mesh derivative with respect to the design variables was calculated by analytical and complex variable methods,substantially improving computational efficiency.These advancements enabled the MLFMAbased surface sensitivity method to millions meshes and large-scale gradients,extending gradientbased optimization for very large electrical size problems.Test cases have verified the effectiveness of this method in optimizing very large electrical objects in terms of both accuracy and efficiency.展开更多
In order to analyze the influences of storage aging on the safety of typical elemental explosives,the aged cyclotrimethylene trinitramine(RDX)and cyclotetramethylene tetranitramine(HMX)were prepared by isothermal agin...In order to analyze the influences of storage aging on the safety of typical elemental explosives,the aged cyclotrimethylene trinitramine(RDX)and cyclotetramethylene tetranitramine(HMX)were prepared by isothermal aging tests.The reaction thresholds of aged RDX and HMX under any ignition probability were studied by Langlie-Optimal D method.The thermal decomposition characteristics of RDX and HMX after aging were analyzed by DSC and ARC.Experimental results showed that compared with unaged RDX and HMX,on the one hand,the critical impact energy and critical friction of RDX and HMX aged for 14,28,and 56 days are significantly reduced at an explosion probability of 50%,0.01%,and 0.0001%,respectively.With the increase of aging time,the mechanical sensitivity of RDX and HMX increases obviously.On the other hand,the initial decomposition temperature of RDX and HMX after 56 days of aging decreases,the decomposition heat decreases,the activation energy increases,and the reaction difficulty increases.展开更多
The viscoelastic micelle systems formed by novel anionic-nonionic dimeric surfactant and conventional cationic surfactant cetyltrimethylammonium(1631) were studied.The viscoelasticity,thixotropy,flow curves and consti...The viscoelastic micelle systems formed by novel anionic-nonionic dimeric surfactant and conventional cationic surfactant cetyltrimethylammonium(1631) were studied.The viscoelasticity,thixotropy,flow curves and constitutive equation for the novel viscoelastic micelle systems were investigated.The results show that the micelle systems possess viscoelasticity,thixotropy,and shear thinning property.Some micelle systems possess hysteresis loops showing both viscoelasticity and thixotropy.It is proved that the flow curves are characterized by the co-rotational Jeffreys constitutive equation correctly.展开更多
Surfactant molecules, when dispersed in solution, have been shown to spontaneously form aggregates. Our previous studies on molecular dynamics(MD) calculations have shown that ionic sodium dodecyl sulfate molecules qu...Surfactant molecules, when dispersed in solution, have been shown to spontaneously form aggregates. Our previous studies on molecular dynamics(MD) calculations have shown that ionic sodium dodecyl sulfate molecules quickly aggregated even when the aggregation number is small. The aggregation rate, however, decreased for larger aggregation numbers. In addition, studies have shown that micelle formation was not completed even after a 100 ns-long MD run(Chem. Phys. Lett. 2016, 646, 36). Herein, we analyze the free energy change of micelle formation based on chemical species model combined with molecular dynamics calculations. First, the free energy landscape of the aggregation, ?G_(i+j)^+, where two aggregates with sizes i and j associate to form the(i + j)-mer, was investigated using the free energy of micelle formation of the i-mer, G_i^+, which was obtained through MD calculations. The calculated ?G_(i+j)^+ was negative for all the aggregations where the sum of DS ions in the two aggregates was 60 or less. From the viewpoint of chemical equilibrium, aggregation to the stable micelle is desired. Further, the free energy profile along possible aggregation pathways was investigated, starting from small aggregates and ending with the complete thermodynamically stable micelles in solution. The free energy profiles, G(l, k), of the aggregates at l-th aggregation path and k-th state were evaluated by the formation free energy ∑_in_i( l,k)G_i^+ and the free energy of mixing ∑_in_i( l,k)k_BTln( n_i( l,k)/n( l,k)), where ni(l, k) is the number of i-mer in the system at the l-th i aggregation path and k-th state, with n(l,k)= ∑_n_i( l,k). All the aggregation pathways were obtained from the initial i state of 12 pentamers to the stable micelle with i = 60. All the calculated G(l, k) values monotonically decreased with increasing k. This indicates that there are no free energy barriers along the pathways. Hence, the slowdown is not due to the thermodynamic stability of the aggregates, but rather the kinetics that inhibit the association of the fragments. The time required for a collision between aggregates, one of the kinetic factors, was evaluated using the fast passage time, t_(FPT). The calculated t_(FPT) was about 20 ns for the aggregates with N = 31. Therefore, if aggregation is a diffusion-controlled process, it should be completed within the 100 ns-simulation. However, aggregation does not occur due to the free energy barrier between the aggregates, that is, the repulsive force acting on them. This may be caused by electrostatic repulsions produced by the overlap of the electric double layers, which are formed by the negative charge of the hydrophilic groups and counter sodium ions on the surface of the aggregates.展开更多
Background and Aim Drug-induced sensitization in the mesocorticolimbic systems has been thought to play an important role in certain aspects of drug addiction, including the important function of drug-associated cues ...Background and Aim Drug-induced sensitization in the mesocorticolimbic systems has been thought to play an important role in certain aspects of drug addiction, including the important function of drug-associated cues and environments in mediating drug-seeking behaviors. Our previous studies have identified a role of heat shock protein 70 (Hsp70) in the development of a single exposure morphine-induced behavioral sensitization. Methods The present study investigated the effect of environment on the expression of behavioral sensitization in- duced by a single morphine exposure, and associated Hsp70 levels. Results Our results showed that expression of single exposure morphine-induced behavioral sensitization was accompanied by a significant increase of Hsp70 ex- mice administered morphine in an unpaired fashion failed pression in the nucleus accumbens (NAc). In contrast, to exhibit behavioral sensitization or higher Hsp70 expression. Additionally, by using a habituation process before we found that there was a transition from conditioned hyperactivity to be- challenge to remove conditioned response, havioral sensitization, the former of which was not accompanied by an increased expression of Hsp70. Conclusions Together, these results suggest that behavioral sensitization induced by a single morphine exposure in mice exhib- its context- and time-dependent patterns with environmental context functioning probably via an inhibitory condition- ing mechanism. Alteration of Hsp70 expression in NAc may represent a neurobiological sensitization mechanism mediating context- and time-dependent behavioral sensitization.展开更多
An environment friendly bio-surfactant of rhamnolipid(RL) was used as a solvent. The enzymatic reaction of oleic acid catalyzed by lipase and lignin peroxidase(lip) was evaluated. The optimum conditions of enzymatic r...An environment friendly bio-surfactant of rhamnolipid(RL) was used as a solvent. The enzymatic reaction of oleic acid catalyzed by lipase and lignin peroxidase(lip) was evaluated. The optimum conditions of enzymatic reaction catalyzed by lipase(lip) were water to amphiphile molar ratio of 30(20), RL of 60(60) critical micelle concentration(CMC), pH of 7.0(3.0) and temperature of 40(30) °C, respectively. The change of enzyme conformation indicates that, for catalytic of lipase, water content is the most important factor of the enzymatic reaction of oleic acid, and p H for lip. With individual optimum conditions, the enzymatic efficiency of oleic acid catalyzed by lipase is higher than that by lip. In the presence of ethanol, the enzymatic reaction of oleic acid catalyzed by lipase suits Ping-Pong Bi-Bi mechanism. As an alternative to chemical reversed micelles, the RL reversed micelles are promising methods to enzymatic reaction of oleic acid.展开更多
Kinetics of D-mannose oxidation by cerium (IV) was studied in a sulfuric acid medium at 40 ℃ both in absence and presence of ionic micelles. In both cases, the rate of the reaction was first-order in D-mannose and in...Kinetics of D-mannose oxidation by cerium (IV) was studied in a sulfuric acid medium at 40 ℃ both in absence and presence of ionic micelles. In both cases, the rate of the reaction was first-order in D-mannose and in cerium (IV), which decreased with increasing [H2SO4]. This suggested that the redox reaction followed the same mechanism. The reaction proceeded through formation of an intermediate complex, which was proved by kinetic method. The complex underwent slow unimolecular decomposition to a free radical that reacted with cerium (IV) to afford the product. The catalytic role of cationic cetyltrimethylammonium bromide (CTAB) micelles was best explained by the Menger-Portnoy model. The study of the effect of CTAB also indicated that a negatively charged species was reactive form of cerium (IV). From the kinetic data, micelle-cerium (IV) binding and rate constants in micellar medium were evaluated. The anionic micelle of sodium dodecyl sulfate plays no catalytic role. The oxidation has the rate expression: -d[Ce(IV)]= k1Kc1[D-mannose][Ce(IV)]dt Different activation parameters for micelle catalyzed and uncatalyzed paths were also calculated and discussed.展开更多
The effect of cationic micelles of cetyltrimethylammonium bromide (CTAB) on the interaction of chromium dipeptide complex ([Cr(Ⅲ)-Gly-Gly]2+) with ninhydrin under varying conditions has been investigated. The rates o...The effect of cationic micelles of cetyltrimethylammonium bromide (CTAB) on the interaction of chromium dipeptide complex ([Cr(Ⅲ)-Gly-Gly]2+) with ninhydrin under varying conditions has been investigated. The rates of the reaction were determined in both water and surfactant micelles in the absence and presence of various organic and inorganic salts at 70 ℃ and pH 5.0. The reaction followed first- and fractional-order kinetics with respect to [Cr(Ⅲ)- Gly-Gly2+] and [ninhydrin]. Increase in the total concentration of CTAB from 0 to 40×10-3 mol·dm-3 resulted in an increase in the pseudo-first-order rate constant (kψ) by a factor of ca 3. Quantitative kinetic analysis of kψ-[CTAB] data was performed on the basis of the pseudo-phase model of the micelles. As added salts induce structural changes in micellar systems that may modify the substrate-surfactant interactions, the effect of some inorganic (NaBr, NaCl, Na2SO4) and organic (NaBenz, NaSal, NaTos) salts on the rate was also explored. It was found that the tightly bound counterions (derived from organic salts) were the most effective.展开更多
Strontium-90,a highly radioactive isotope,accumulates within the food chain and skeletal structure,posing significant risks to human health.There is a critical need for a sensitive detection strategy for Strontium-90 ...Strontium-90,a highly radioactive isotope,accumulates within the food chain and skeletal structure,posing significant risks to human health.There is a critical need for a sensitive detection strategy for Strontium-90 in complex environmental samples.Here,solid-state nanochannels,modified with metal-organic frameworks(MOF)and specific aptamers,were engineered for highly sensitive detection of strontium ion(Sr^(2+)).The synergistic effect between the reduced effective diameter of the nanochannels due to MOF and the specific binding of Sr^(2+) by aptamers amplifies the difference in ionic current signals,enhancing detection sensitivity significantly.The MOF-modified nanochannels exhibit highly sensitive detection of Sr^(2+),with a limit of detection(LOD)being 0.03 nmol·L^(-1),whereas the LOD for anodized aluminum oxide(AAO)without the modified MOF nanosheets is only 1000 nmol·L^(-1).These findings indicate that the LOD of Sr^(2+) detected by the MOF-modified nanochannels is approximately 33,000 times higher than that by the nanochannels without MOF modification.Additionally,the highly reliable detection of Sr^(2+) in various water samples was achieved,with a recovery rate ranging from 94.00%to 118.70%.This study provides valuable insights into the rapidly advancing field of advanced nanochannel-based sensors and their diverse applications for analyzing complex samples,including environmental contaminant detection,food analysis,medical diagnostics,and more.展开更多
The impact sensitivity assessment of spacecraft is to obtain the probability of spacecraft encountering the OD/M(orbital debris or meteoroid),which is a prerequisite for survivability assessment of on-orbit spacecraft...The impact sensitivity assessment of spacecraft is to obtain the probability of spacecraft encountering the OD/M(orbital debris or meteoroid),which is a prerequisite for survivability assessment of on-orbit spacecraft.An impact sensitivity assessment method of spacecraft based on virtual exterior wall was proposed to improve the computational efficiency.This method eliminates determination of the outermost surface elements of the spacecraft before generating the debris rays,which are assumed to originate from a non-concave virtual wall that completely wraps the spacecraft.The Dist Mesh method was adopted for the generating of the virtual wall to ensure its mesh quality.The influences of the sizes,mesh densities,shapes of the virtual wall on the efficiency and accuracy were considered to obtain the best combination of the size and mesh density of the wall and spacecraft.The results of this method were compared with those of S3DE(Survivability of Spacecraft in Space Debris Environment),BUMPER,MDPANTO,ESABASE2/Debris to verify the feasibility of the method.The PCHIP(Piecewise Cubic Hermite Interpolating Polynomial)was used to fit the size vs.flux relationship of the space debris to acquire the impact probability of OD/M with arbitrary size on the spacecraft.展开更多
Mendelian randomization(MR)is widely used in causal mediation analysis to control unmeasured confounding effects,which is valid under some strong assumptions.It is thus of great interest to assess the impact of violat...Mendelian randomization(MR)is widely used in causal mediation analysis to control unmeasured confounding effects,which is valid under some strong assumptions.It is thus of great interest to assess the impact of violations of these MR assumptions through sensitivity analysis.Sensitivity analyses have been conducted for simple MR-based causal average effect analyses,but they are not available for MR-based mediation analysis studies,and we aim to fill this gap in this paper.We propose to use two sensitivity parameters to quantify the effect due to the deviation of the IV assumptions.With these two sensitivity parameters,we derive consistent indirect causal effect estimators and establish their asymptotic propersties.Our theoretical results can be used in MR-based mediation analysis to study the impact of violations of MR as-sumptions.The finite sample performance of the proposed method is illustrated through simulation studies,sensitivity ana-lysis,and application to a real genome-wide association study.展开更多
High purity and ultrafine DAAF(u-DAAF)is an emerging insensitive charge in initiators.Although there are many ways to obtain u-DAAF,developing a preparation method with stable operation,accurate control,good quality c...High purity and ultrafine DAAF(u-DAAF)is an emerging insensitive charge in initiators.Although there are many ways to obtain u-DAAF,developing a preparation method with stable operation,accurate control,good quality consistency,equipment miniaturization,and minimum manpower is an inevitable requirement to adapt to the current social technology development trend.Here reported is the microfluidic preparation of u-DAAF with tunable particle size by a passive swirling microreactor.Under the guidance of recrystallization growth kinetics and mixing behavior of fluids in the swirling microreactor,the key parameters(liquid flow rate,explosive concentration and crystallization temperature)were screened and optimized through screening experiments.Under the condition that no surfactant is added and only experimental parameters are controlled,the particle size of recrystallized DAAF can be adjusted from 98 nm to 785 nm,and the corresponding specific surface area is 8.45 m^(2)·g^(-1)to 1.33 m^(2)·g^(-1).In addition,the preparation method has good batch stability,high yield(90.8%-92.6%)and high purity(99.0%-99.4%),indicating a high practical application potential.Electric explosion derived flyer initiation tests demonstrate that the u-DAAF shows an initiation sensitivity much lower than that of the raw DAAF,and comparable to that of the refined DAAF by conventional spraying crystallization method.This study provides an efficient method to fabricate u-DAAF with narrow particle size distribution and high reproducibility as well as a theoretical reference for fabrication of other ultrafine explosives.展开更多
Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous...Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous explosive reactions when subjected to external stimuli such as electrical discharge.Therefore,developing a reliable model for predicting their electrostatic discharge sensitivity(ESD)becomes imperative.This study proposes a novel and straightforward model based on the presence of specific groups(-NH_(2) or-NH-,-N=N^(+)-O^(-)and-NNO_(2),-ONO_(2) or-NO_(2))under certain conditions to assess the ESD of NRHECs and their salts,employing interpretable structural parameters.Utilizing a comprehensive dataset comprising 54 ESD measurements of NRHECs and their salts,divided into 49/5 training/test sets,the model achieves promising results.The Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Maximum Error for the training set are reported as 0.16 J,0.12 J,and 0.5 J,respectively.Notably,the ratios RMSE(training)/RMSE(test),MAE(training)/MAE(test),and Max Error(training)/Max Error(test)are all greater than 1.0,indicating the robust predictive capabilities of the model.The presented model demonstrates its efficacy in providing a reliable assessment of ESD for the targeted NRHECs and their salts,without the need for intricate computer codes or expert involvement.展开更多
The expanded ammonium nitrate (EAN) samples with different states were prepared by using a vacuum crystallizing technology. The structure characters,such as porosity,pore structure,specific surface area,particle surfa...The expanded ammonium nitrate (EAN) samples with different states were prepared by using a vacuum crystallizing technology. The structure characters,such as porosity,pore structure,specific surface area,particle surface shape and surface defects,and detonator initiation sensitivity and explosion power,of common ammonium nitrate (AN) and EAN were tested using density measuring,N2 adsorbing,scanning electron microscope (SEM) and plate trace test methods. The tested results show that the particle surface of common AN is smoother,denser,lower porosity and specific surface area than those tested of EAN. The particle surface of EAN is irregular,which has edges,protuberance and severely distorted crystal form,and its specific surface area and porosity are larger than those of un-expanded AN. EAN has typical self-sensitization structure characters. The detonator initiation sensitivity and explosion power of ammonium nitrate-fuel oil(ANFO) made of different states of EAN are related to the self-sensitization structures of EAN,and expanded ANFO sample has higher detonator initiation sensitivity and explosion power compared with un-expanded ANFO sample. The characterization techniques can be used to reveal the self-sensitization structure of EAN.展开更多
文摘To investigate the mechanisms of apigenin(API)and proanthocyanidins(PC)in soothing sensitive skin(SS),a mast cell degranulation model was established by stimulating RBL-2H3 cells with the calcium ionophore A23187.Based on the combinatorial experiments,it was found that when API and PC were combined at the molar ratios of 4∶1 and 2∶1,they exhibited the antagonistic effects on histamine release(combination index CI>1);when they are combined at the molar ratios of 1∶1,1∶2 or 1∶4,they showed the synergistic effects on histamine release(CI<1).Among them,the combination of API and PC at a molar ratio of 1∶1 showed the better potent synergistic antihistamine release effect(CI=0.70).Histamine is a hallmark of the mast cell degranulation,consequently,the combination of API and PC at a molar ratio of 1∶1 yields the better efficiency in inhibiting the mast cell degranulation with the lowest IC_(50)value.Compared to the utilization of API or PC alone,the IC_(50)value was reduced by 11.150 and 6.503μmol/L,respectively.Compared to the positive control paeonol(PA),the treatment with the combination significantly reduced theβ-hex secretion,decreased the F-actin cytoskeleton rearrangement,and markedly suppressed the release of TNF-α,IL-4,and MCP-1.Further studies on the signaling pathways related to the mast cell degranulation indicated that the combination effectively inhibited the intracellular Ca^(2+)influx and significantly suppressed the phosphorylation of calmodulin-dependent protein kinase(CaMK)and phospholipase C/protein kinase C(PLC/PKC).In summary,the combination of API and PC at a molar ratio of 1∶1 exhibited the better synergistic antagonistic effect on the histamine release,inhibited the mast cell degranulation model activation by reducing Ca^(2+)influx and inhibiting the activation of Ca^(2+)/CaMK and PLC/PKC pathways,stabilized the cell membranes,regulated the inflammatory factor secretion,and exerted an effect in alleviating sensitive skin.
基金Project(52205421)supported by the National Natural Science Foundation of ChinaProject(AA23023028)supported by the Guangxi Science and Technology Major Project,China+2 种基金Projects(2022B0909070001,2020B010186001)supported by the Key Research and Development Projects of Guangdong Province,ChinaProject(2021B0101220006)supported by the Guangdong Key Areas Research and Development Program“Chip,Software and Computing”Major Project,ChinaProjects(2021RC2087,2022JJ30570)supported by the Science and Technology Innovation Program of Hunan Province,China。
文摘The effect of hot deformation on the quench sensitivity of the 7085 alloy was studied through hardness testing and microstructure characterization.The findings indicate that hot deformation enhances the quench sensitivity of the 7085 alloy,with the hardness difference between water quenching and air cooling increasing from 5.4%(before hot deformation)to 10.4%(after hot deformation).In the undeformed samples,the Al3Zr particles within the grains exhibit better coherent with the Al matrix.During slow quenching,only theηphase is observed on Al3Zr particles and at the grain boundaries.Hot deformation leads to a mass of recrystallization and the formation of subgrains with high dislocation density.This results in an increase in the types,quantities,and sizes of heterogeneous precipitates during quenching.In the slow quenching process,high angle grain boundaries are best for the nucleation and growth of theηphase.Secondly,a substantial quantity ofηand T phases precipitate on the non-coherent Al3Zr phase within the recrystallized grains.The locations with high dislocation density subgrains(boundaries)serve as nucleation positions for theηand T phases precipitating.Additionally,the Y phase is observed to precipitate at dislocation sites within the subgrains.
基金supported by the National Key Research and Development Program of China(Grant No.2023YFB3002800).
文摘The primary concern in stealth aircraft design is the very large electrical size objects.However,the computational and storage requirements of these objects present significant obstacles for current highfidelity design methods,particularly when addressing high-dimensional complex engineering design problems.To address these challenges,we developed a surface sensitivity technique based on the multilevel fast multipole algorithm(MLFMA).An access and storage of sparse partial derivative tensor was improved to significantly enhanced the computation performance.The far-field interactions of the surface sensitivity equation were realized by differential the multipole expansion.In addition,we proposed a fast far-field multiplication method to accelerate the multiplication process.The surface mesh derivative with respect to the design variables was calculated by analytical and complex variable methods,substantially improving computational efficiency.These advancements enabled the MLFMAbased surface sensitivity method to millions meshes and large-scale gradients,extending gradientbased optimization for very large electrical size problems.Test cases have verified the effectiveness of this method in optimizing very large electrical objects in terms of both accuracy and efficiency.
基金supported by the National Key Laboratory of Energetic Materials, China (Grant No. 2023-LB-036-09).
文摘In order to analyze the influences of storage aging on the safety of typical elemental explosives,the aged cyclotrimethylene trinitramine(RDX)and cyclotetramethylene tetranitramine(HMX)were prepared by isothermal aging tests.The reaction thresholds of aged RDX and HMX under any ignition probability were studied by Langlie-Optimal D method.The thermal decomposition characteristics of RDX and HMX after aging were analyzed by DSC and ARC.Experimental results showed that compared with unaged RDX and HMX,on the one hand,the critical impact energy and critical friction of RDX and HMX aged for 14,28,and 56 days are significantly reduced at an explosion probability of 50%,0.01%,and 0.0001%,respectively.With the increase of aging time,the mechanical sensitivity of RDX and HMX increases obviously.On the other hand,the initial decomposition temperature of RDX and HMX after 56 days of aging decreases,the decomposition heat decreases,the activation energy increases,and the reaction difficulty increases.
基金Project(20276016) supported by the National Natural Science Foundation of China
文摘The viscoelastic micelle systems formed by novel anionic-nonionic dimeric surfactant and conventional cationic surfactant cetyltrimethylammonium(1631) were studied.The viscoelasticity,thixotropy,flow curves and constitutive equation for the novel viscoelastic micelle systems were investigated.The results show that the micelle systems possess viscoelasticity,thixotropy,and shear thinning property.Some micelle systems possess hysteresis loops showing both viscoelasticity and thixotropy.It is proved that the flow curves are characterized by the co-rotational Jeffreys constitutive equation correctly.
基金This work was supported by FLAGSHIP2020,MEXT within Priority Study 5(Development of New Fundamental Technologies for High-Efficiency Energy Creation,Conversion/Storage and Use)Using Computational Resources of the K Computer Provided by the RIKEN Advanced
文摘Surfactant molecules, when dispersed in solution, have been shown to spontaneously form aggregates. Our previous studies on molecular dynamics(MD) calculations have shown that ionic sodium dodecyl sulfate molecules quickly aggregated even when the aggregation number is small. The aggregation rate, however, decreased for larger aggregation numbers. In addition, studies have shown that micelle formation was not completed even after a 100 ns-long MD run(Chem. Phys. Lett. 2016, 646, 36). Herein, we analyze the free energy change of micelle formation based on chemical species model combined with molecular dynamics calculations. First, the free energy landscape of the aggregation, ?G_(i+j)^+, where two aggregates with sizes i and j associate to form the(i + j)-mer, was investigated using the free energy of micelle formation of the i-mer, G_i^+, which was obtained through MD calculations. The calculated ?G_(i+j)^+ was negative for all the aggregations where the sum of DS ions in the two aggregates was 60 or less. From the viewpoint of chemical equilibrium, aggregation to the stable micelle is desired. Further, the free energy profile along possible aggregation pathways was investigated, starting from small aggregates and ending with the complete thermodynamically stable micelles in solution. The free energy profiles, G(l, k), of the aggregates at l-th aggregation path and k-th state were evaluated by the formation free energy ∑_in_i( l,k)G_i^+ and the free energy of mixing ∑_in_i( l,k)k_BTln( n_i( l,k)/n( l,k)), where ni(l, k) is the number of i-mer in the system at the l-th i aggregation path and k-th state, with n(l,k)= ∑_n_i( l,k). All the aggregation pathways were obtained from the initial i state of 12 pentamers to the stable micelle with i = 60. All the calculated G(l, k) values monotonically decreased with increasing k. This indicates that there are no free energy barriers along the pathways. Hence, the slowdown is not due to the thermodynamic stability of the aggregates, but rather the kinetics that inhibit the association of the fragments. The time required for a collision between aggregates, one of the kinetic factors, was evaluated using the fast passage time, t_(FPT). The calculated t_(FPT) was about 20 ns for the aggregates with N = 31. Therefore, if aggregation is a diffusion-controlled process, it should be completed within the 100 ns-simulation. However, aggregation does not occur due to the free energy barrier between the aggregates, that is, the repulsive force acting on them. This may be caused by electrostatic repulsions produced by the overlap of the electric double layers, which are formed by the negative charge of the hydrophilic groups and counter sodium ions on the surface of the aggregates.
文摘Background and Aim Drug-induced sensitization in the mesocorticolimbic systems has been thought to play an important role in certain aspects of drug addiction, including the important function of drug-associated cues and environments in mediating drug-seeking behaviors. Our previous studies have identified a role of heat shock protein 70 (Hsp70) in the development of a single exposure morphine-induced behavioral sensitization. Methods The present study investigated the effect of environment on the expression of behavioral sensitization in- duced by a single morphine exposure, and associated Hsp70 levels. Results Our results showed that expression of single exposure morphine-induced behavioral sensitization was accompanied by a significant increase of Hsp70 ex- mice administered morphine in an unpaired fashion failed pression in the nucleus accumbens (NAc). In contrast, to exhibit behavioral sensitization or higher Hsp70 expression. Additionally, by using a habituation process before we found that there was a transition from conditioned hyperactivity to be- challenge to remove conditioned response, havioral sensitization, the former of which was not accompanied by an increased expression of Hsp70. Conclusions Together, these results suggest that behavioral sensitization induced by a single morphine exposure in mice exhib- its context- and time-dependent patterns with environmental context functioning probably via an inhibitory condition- ing mechanism. Alteration of Hsp70 expression in NAc may represent a neurobiological sensitization mechanism mediating context- and time-dependent behavioral sensitization.
基金Projects(50978087,51009063,50978088)supported by the National Natural Science Foundation of China
文摘An environment friendly bio-surfactant of rhamnolipid(RL) was used as a solvent. The enzymatic reaction of oleic acid catalyzed by lipase and lignin peroxidase(lip) was evaluated. The optimum conditions of enzymatic reaction catalyzed by lipase(lip) were water to amphiphile molar ratio of 30(20), RL of 60(60) critical micelle concentration(CMC), pH of 7.0(3.0) and temperature of 40(30) °C, respectively. The change of enzyme conformation indicates that, for catalytic of lipase, water content is the most important factor of the enzymatic reaction of oleic acid, and p H for lip. With individual optimum conditions, the enzymatic efficiency of oleic acid catalyzed by lipase is higher than that by lip. In the presence of ethanol, the enzymatic reaction of oleic acid catalyzed by lipase suits Ping-Pong Bi-Bi mechanism. As an alternative to chemical reversed micelles, the RL reversed micelles are promising methods to enzymatic reaction of oleic acid.
文摘Kinetics of D-mannose oxidation by cerium (IV) was studied in a sulfuric acid medium at 40 ℃ both in absence and presence of ionic micelles. In both cases, the rate of the reaction was first-order in D-mannose and in cerium (IV), which decreased with increasing [H2SO4]. This suggested that the redox reaction followed the same mechanism. The reaction proceeded through formation of an intermediate complex, which was proved by kinetic method. The complex underwent slow unimolecular decomposition to a free radical that reacted with cerium (IV) to afford the product. The catalytic role of cationic cetyltrimethylammonium bromide (CTAB) micelles was best explained by the Menger-Portnoy model. The study of the effect of CTAB also indicated that a negatively charged species was reactive form of cerium (IV). From the kinetic data, micelle-cerium (IV) binding and rate constants in micellar medium were evaluated. The anionic micelle of sodium dodecyl sulfate plays no catalytic role. The oxidation has the rate expression: -d[Ce(IV)]= k1Kc1[D-mannose][Ce(IV)]dt Different activation parameters for micelle catalyzed and uncatalyzed paths were also calculated and discussed.
文摘The effect of cationic micelles of cetyltrimethylammonium bromide (CTAB) on the interaction of chromium dipeptide complex ([Cr(Ⅲ)-Gly-Gly]2+) with ninhydrin under varying conditions has been investigated. The rates of the reaction were determined in both water and surfactant micelles in the absence and presence of various organic and inorganic salts at 70 ℃ and pH 5.0. The reaction followed first- and fractional-order kinetics with respect to [Cr(Ⅲ)- Gly-Gly2+] and [ninhydrin]. Increase in the total concentration of CTAB from 0 to 40×10-3 mol·dm-3 resulted in an increase in the pseudo-first-order rate constant (kψ) by a factor of ca 3. Quantitative kinetic analysis of kψ-[CTAB] data was performed on the basis of the pseudo-phase model of the micelles. As added salts induce structural changes in micellar systems that may modify the substrate-surfactant interactions, the effect of some inorganic (NaBr, NaCl, Na2SO4) and organic (NaBenz, NaSal, NaTos) salts on the rate was also explored. It was found that the tightly bound counterions (derived from organic salts) were the most effective.
基金supported by the National Natural Science Foundation of China(No.22090050,No.22090052,No.22176180)National Basic Research Program of China(No.2021YFA1200400)+1 种基金the Natural Science Foundation of Hubei Province(No.2024AFA001)Shenzhen Science and Technology Program(No.JCYJ20220530162406014)。
文摘Strontium-90,a highly radioactive isotope,accumulates within the food chain and skeletal structure,posing significant risks to human health.There is a critical need for a sensitive detection strategy for Strontium-90 in complex environmental samples.Here,solid-state nanochannels,modified with metal-organic frameworks(MOF)and specific aptamers,were engineered for highly sensitive detection of strontium ion(Sr^(2+)).The synergistic effect between the reduced effective diameter of the nanochannels due to MOF and the specific binding of Sr^(2+) by aptamers amplifies the difference in ionic current signals,enhancing detection sensitivity significantly.The MOF-modified nanochannels exhibit highly sensitive detection of Sr^(2+),with a limit of detection(LOD)being 0.03 nmol·L^(-1),whereas the LOD for anodized aluminum oxide(AAO)without the modified MOF nanosheets is only 1000 nmol·L^(-1).These findings indicate that the LOD of Sr^(2+) detected by the MOF-modified nanochannels is approximately 33,000 times higher than that by the nanochannels without MOF modification.Additionally,the highly reliable detection of Sr^(2+) in various water samples was achieved,with a recovery rate ranging from 94.00%to 118.70%.This study provides valuable insights into the rapidly advancing field of advanced nanochannel-based sensors and their diverse applications for analyzing complex samples,including environmental contaminant detection,food analysis,medical diagnostics,and more.
文摘The impact sensitivity assessment of spacecraft is to obtain the probability of spacecraft encountering the OD/M(orbital debris or meteoroid),which is a prerequisite for survivability assessment of on-orbit spacecraft.An impact sensitivity assessment method of spacecraft based on virtual exterior wall was proposed to improve the computational efficiency.This method eliminates determination of the outermost surface elements of the spacecraft before generating the debris rays,which are assumed to originate from a non-concave virtual wall that completely wraps the spacecraft.The Dist Mesh method was adopted for the generating of the virtual wall to ensure its mesh quality.The influences of the sizes,mesh densities,shapes of the virtual wall on the efficiency and accuracy were considered to obtain the best combination of the size and mesh density of the wall and spacecraft.The results of this method were compared with those of S3DE(Survivability of Spacecraft in Space Debris Environment),BUMPER,MDPANTO,ESABASE2/Debris to verify the feasibility of the method.The PCHIP(Piecewise Cubic Hermite Interpolating Polynomial)was used to fit the size vs.flux relationship of the space debris to acquire the impact probability of OD/M with arbitrary size on the spacecraft.
基金This work was supported by the National Natural Science Foundation of China(12171451,72091212).
文摘Mendelian randomization(MR)is widely used in causal mediation analysis to control unmeasured confounding effects,which is valid under some strong assumptions.It is thus of great interest to assess the impact of violations of these MR assumptions through sensitivity analysis.Sensitivity analyses have been conducted for simple MR-based causal average effect analyses,but they are not available for MR-based mediation analysis studies,and we aim to fill this gap in this paper.We propose to use two sensitivity parameters to quantify the effect due to the deviation of the IV assumptions.With these two sensitivity parameters,we derive consistent indirect causal effect estimators and establish their asymptotic propersties.Our theoretical results can be used in MR-based mediation analysis to study the impact of violations of MR as-sumptions.The finite sample performance of the proposed method is illustrated through simulation studies,sensitivity ana-lysis,and application to a real genome-wide association study.
基金the National Natural Science Foundation of China (Grant No.22105184)Research Fund of SWUST for PhD (Grant No.22zx7175)+1 种基金Sichuan Science and Technology Program (Grant No.2019ZDZX0013)Institute of Chemical Materials Program (Grant No.SXK-2022-03)for financial support。
文摘High purity and ultrafine DAAF(u-DAAF)is an emerging insensitive charge in initiators.Although there are many ways to obtain u-DAAF,developing a preparation method with stable operation,accurate control,good quality consistency,equipment miniaturization,and minimum manpower is an inevitable requirement to adapt to the current social technology development trend.Here reported is the microfluidic preparation of u-DAAF with tunable particle size by a passive swirling microreactor.Under the guidance of recrystallization growth kinetics and mixing behavior of fluids in the swirling microreactor,the key parameters(liquid flow rate,explosive concentration and crystallization temperature)were screened and optimized through screening experiments.Under the condition that no surfactant is added and only experimental parameters are controlled,the particle size of recrystallized DAAF can be adjusted from 98 nm to 785 nm,and the corresponding specific surface area is 8.45 m^(2)·g^(-1)to 1.33 m^(2)·g^(-1).In addition,the preparation method has good batch stability,high yield(90.8%-92.6%)and high purity(99.0%-99.4%),indicating a high practical application potential.Electric explosion derived flyer initiation tests demonstrate that the u-DAAF shows an initiation sensitivity much lower than that of the raw DAAF,and comparable to that of the refined DAAF by conventional spraying crystallization method.This study provides an efficient method to fabricate u-DAAF with narrow particle size distribution and high reproducibility as well as a theoretical reference for fabrication of other ultrafine explosives.
文摘Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous explosive reactions when subjected to external stimuli such as electrical discharge.Therefore,developing a reliable model for predicting their electrostatic discharge sensitivity(ESD)becomes imperative.This study proposes a novel and straightforward model based on the presence of specific groups(-NH_(2) or-NH-,-N=N^(+)-O^(-)and-NNO_(2),-ONO_(2) or-NO_(2))under certain conditions to assess the ESD of NRHECs and their salts,employing interpretable structural parameters.Utilizing a comprehensive dataset comprising 54 ESD measurements of NRHECs and their salts,divided into 49/5 training/test sets,the model achieves promising results.The Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Maximum Error for the training set are reported as 0.16 J,0.12 J,and 0.5 J,respectively.Notably,the ratios RMSE(training)/RMSE(test),MAE(training)/MAE(test),and Max Error(training)/Max Error(test)are all greater than 1.0,indicating the robust predictive capabilities of the model.The presented model demonstrates its efficacy in providing a reliable assessment of ESD for the targeted NRHECs and their salts,without the need for intricate computer codes or expert involvement.
文摘The expanded ammonium nitrate (EAN) samples with different states were prepared by using a vacuum crystallizing technology. The structure characters,such as porosity,pore structure,specific surface area,particle surface shape and surface defects,and detonator initiation sensitivity and explosion power,of common ammonium nitrate (AN) and EAN were tested using density measuring,N2 adsorbing,scanning electron microscope (SEM) and plate trace test methods. The tested results show that the particle surface of common AN is smoother,denser,lower porosity and specific surface area than those tested of EAN. The particle surface of EAN is irregular,which has edges,protuberance and severely distorted crystal form,and its specific surface area and porosity are larger than those of un-expanded AN. EAN has typical self-sensitization structure characters. The detonator initiation sensitivity and explosion power of ammonium nitrate-fuel oil(ANFO) made of different states of EAN are related to the self-sensitization structures of EAN,and expanded ANFO sample has higher detonator initiation sensitivity and explosion power compared with un-expanded ANFO sample. The characterization techniques can be used to reveal the self-sensitization structure of EAN.