期刊文献+
共找到1,803篇文章
< 1 2 91 >
每页显示 20 50 100
Tomato detection method using domain adaptive learning for dense planting environments 被引量:1
1
作者 LI Yang HOU Wenhui +4 位作者 YANG Huihuang RAO Yuan WANG Tan JIN Xiu ZHU Jun 《农业工程学报》 EI CAS CSCD 北大核心 2024年第13期134-145,共12页
This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy ... This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy reliance on extensive manually annotated datasets for training deep learning models still poses significant limitations to their application in real-world agricultural production environments.To overcome these limitations,we employed domain adaptive learning approach combined with the YOLOv5 model to develop a novel tomato detection model called as TDA-YOLO(tomato detection domain adaptation).We designated the normal illumination scenes in dense planting environments as the source domain and utilized various other illumination scenes as the target domain.To construct bridge mechanism between source and target domains,neural preset for color style transfer is introduced to generate a pseudo-dataset,which served to deal with domain discrepancy.Furthermore,this study combines the semi-supervised learning method to enable the model to extract domain-invariant features more fully,and uses knowledge distillation to improve the model's ability to adapt to the target domain.Additionally,for purpose of promoting inference speed and low computational demand,the lightweight FasterNet network was integrated into the YOLOv5's C3 module,creating a modified C3_Faster module.The experimental results demonstrated that the proposed TDA-YOLO model significantly outperformed original YOLOv5s model,achieving a mAP(mean average precision)of 96.80%for tomato detection across diverse scenarios in dense planting environments,increasing by 7.19 percentage points;Compared with the latest YOLOv8 and YOLOv9,it is also 2.17 and 1.19 percentage points higher,respectively.The model's average detection time per image was an impressive 15 milliseconds,with a FLOPs(floating point operations per second)count of 13.8 G.After acceleration processing,the detection accuracy of the TDA-YOLO model on the Jetson Xavier NX development board is 90.95%,the mAP value is 91.35%,and the detection time of each image is 21 ms,which can still meet the requirements of real-time detection of tomatoes in dense planting environment.The experimental results show that the proposed TDA-YOLO model can accurately and quickly detect tomatoes in dense planting environment,and at the same time avoid the use of a large number of annotated data,which provides technical support for the development of automatic harvesting systems for tomatoes and other fruits. 展开更多
关键词 PLANTS MODELS domain adaptive tomato detection illumination variation semi-supervised learning dense planting environments
在线阅读 下载PDF
RVFLN-based online adaptive semi-supervised learning algorithm with application to product quality estimation of industrial processes 被引量:5
2
作者 DAI Wei HU Jin-cheng +2 位作者 CHENG Yu-hu WANG Xue-song CHAI Tian-you 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第12期3338-3350,共13页
Direct online measurement on product quality of industrial processes is difficult to be realized,which leads to a large number of unlabeled samples in modeling data.Therefore,it needs to employ semi-supervised learnin... Direct online measurement on product quality of industrial processes is difficult to be realized,which leads to a large number of unlabeled samples in modeling data.Therefore,it needs to employ semi-supervised learning(SSL)method to establish the soft sensor model of product quality.Considering the slow time-varying characteristic of industrial processes,the model parameters should be updated smoothly.According to this characteristic,this paper proposes an online adaptive semi-supervised learning algorithm based on random vector functional link network(RVFLN),denoted as OAS-RVFLN.By introducing a L2-fusion term that can be seen a weight deviation constraint,the proposed algorithm unifies the offline and online learning,and achieves smoothness of model parameter update.Empirical evaluations both on benchmark testing functions and datasets reveal that the proposed OAS-RVFLN can outperform the conventional methods in learning speed and accuracy.Finally,the OAS-RVFLN is applied to the coal dense medium separation process in coal industry to estimate the ash content of coal product,which further verifies its effectiveness and potential of industrial application. 展开更多
关键词 semi-supervised learning(SSL) L2-fusion term online adaptation random vector functional link network(RVFLN)
在线阅读 下载PDF
Error assessment of laser cutting predictions by semi-supervised learning
3
作者 Mustafa Zaidi Imran Amin +1 位作者 Ahmad Hussain Nukman Yusoff 《Journal of Central South University》 SCIE EI CAS 2014年第10期3736-3745,共10页
Experimentation data of perspex glass sheet cutting, using CO2 laser, with missing values were modelled with semi-supervised artificial neural networks. Factorial design of experiment was selected for the verification... Experimentation data of perspex glass sheet cutting, using CO2 laser, with missing values were modelled with semi-supervised artificial neural networks. Factorial design of experiment was selected for the verification of orthogonal array based model prediction. It shows improvement in modelling of edge quality and kerf width by applying semi-supervised learning algorithm, based on novel error assessment on simulations. The results are expected to depict better prediction on average by utilizing the systematic randomized techniques to initialize the neural network weights and increase the number of initialization. Missing values handling is difficult with statistical tools and supervised learning techniques; on the other hand, semi-supervised learning generates better results with the smallest datasets even with missing values. 展开更多
关键词 semi-supervised learning training algorithm kerf width edge quality laser cutting process artificial neural network(ANN)
在线阅读 下载PDF
基于改进Q-learning算法的移动机器人路径规划 被引量:3
4
作者 井征淼 刘宏杰 周永录 《火力与指挥控制》 CSCD 北大核心 2024年第3期135-141,共7页
针对传统Q-learning算法应用在路径规划中存在收敛速度慢、运行时间长、学习效率差等问题,提出一种将人工势场法和传统Q-learning算法结合的改进Q-learning算法。该算法引入人工势场法的引力函数与斥力函数,通过对比引力函数动态选择奖... 针对传统Q-learning算法应用在路径规划中存在收敛速度慢、运行时间长、学习效率差等问题,提出一种将人工势场法和传统Q-learning算法结合的改进Q-learning算法。该算法引入人工势场法的引力函数与斥力函数,通过对比引力函数动态选择奖励值,以及对比斥力函数计算姿值,动态更新Q值,使移动机器人具有目的性的探索,并且优先选择离障碍物较远的位置移动。通过仿真实验证明,与传统Q-learning算法、引入引力场算法对比,改进Q-learning算法加快了收敛速度,缩短了运行时间,提高了学习效率,降低了与障碍物相撞的概率,使移动机器人能够快速地找到一条无碰撞通路。 展开更多
关键词 移动机器人 路径规划 改进的Q-learning 人工势场法 强化学习
在线阅读 下载PDF
A Hybrid Learning Method for Multilayer Perceptrons 被引量:1
5
作者 Zhon Meide Huang Wenhu Hong Jiarong (School of Astronautics) 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 1990年第3期52-61,共10页
A Newton learning method for a neural network of multilayer perceptrons is proposed in this paper. Furthermore, a hybrid learning method id legitimately developed in combination of the backpropagation method proposed ... A Newton learning method for a neural network of multilayer perceptrons is proposed in this paper. Furthermore, a hybrid learning method id legitimately developed in combination of the backpropagation method proposed by Rumelhart et al with the Newton learning method. Finally, the hybrid learning algorithm is compared with the backpropagation algorithm by some illustrations, and the results show that this hybrid leaming algorithm bas the characteristics of rapid convergence. 展开更多
关键词 计算机 多层感知机 牛顿线性方法 神经网络 增殖算法
在线阅读 下载PDF
E-learning网络平台的构建及应用效果分析 被引量:19
6
作者 黄华兴 袁艺标 +6 位作者 刘力嘉 杨海源 沈历宗 夏添松 秦超 叶俊 王水 《实验室研究与探索》 CAS 北大核心 2017年第2期200-203,共4页
目的:传统课程以面对面授课为主,不能满足现代教学发展的需要。Elearning是在线学习新方式,通过计算机互联网或手机无线网络进行网络授课、答疑和论坛交流。方法:通过E-learning网络平台的构建及应用,对比分析网络平台应用前后学生掌握... 目的:传统课程以面对面授课为主,不能满足现代教学发展的需要。Elearning是在线学习新方式,通过计算机互联网或手机无线网络进行网络授课、答疑和论坛交流。方法:通过E-learning网络平台的构建及应用,对比分析网络平台应用前后学生掌握知识的程度和师生交流的密切程度,实验组与对照组医学生的实验考核、理论考试成绩输入Excel 2007,并用Stata 19.0统计分析。结果:常规课堂教学以外开发E-learning平台并强化利用,确能提高学生成绩,促进师生互动,不失为传统授课方式的有益补充。结论:课堂教学为主,E-learning学习为辅的教学模式符合当前信息社会的发展趋势和学生的学习规律,相辅相成,共同促进医学生知识的掌握和临床技能水平的提高。但E-learning平台建设是一项系统工程,必须长远规划,循序渐进,逐步完善,方能发挥更大效能。 展开更多
关键词 外科学基础 E-learning平台 医学院 教学模式
在线阅读 下载PDF
离散四水库问题基准下基于n步Q-learning的水库群优化调度 被引量:5
7
作者 胡鹤轩 钱泽宇 +1 位作者 胡强 张晔 《中国水利水电科学研究院学报(中英文)》 北大核心 2023年第2期138-147,共10页
水库优化调度问题是一个具有马尔可夫性的优化问题。强化学习是目前解决马尔可夫决策过程问题的研究热点,其在解决单个水库优化调度问题上表现优异,但水库群系统的复杂性为强化学习的应用带来困难。针对复杂的水库群优化调度问题,提出... 水库优化调度问题是一个具有马尔可夫性的优化问题。强化学习是目前解决马尔可夫决策过程问题的研究热点,其在解决单个水库优化调度问题上表现优异,但水库群系统的复杂性为强化学习的应用带来困难。针对复杂的水库群优化调度问题,提出一种离散四水库问题基准下基于n步Q-learning的水库群优化调度方法。该算法基于n步Q-learning算法,对离散四水库问题基准构建一种水库群优化调度的强化学习模型,通过探索经验优化,最终生成水库群最优调度方案。试验分析结果表明,当有足够的探索经验进行学习时,结合惩罚函数的一步Q-learning算法能够达到理论上的最优解。用可行方向法取代惩罚函数实现约束,依据离散四水库问题基准约束建立时刻可行状态表和时刻状态可选动作哈希表,有效的对状态动作空间进行降维,使算法大幅度缩短优化时间。不同的探索策略决定探索经验的有效性,从而决定优化效率,尤其对于复杂的水库群优化调度问题,提出了一种改进的ε-greedy策略,并与传统的ε-greedy、置信区间上限UCB、Boltzmann探索三种策略进行对比,验证了其有效性,在其基础上引入n步回报改进为n步Q-learning,确定合适的n步和学习率等超参数,进一步改进算法优化效率。 展开更多
关键词 水库优化调度 强化学习 Q学习 惩罚函数 可行方向法
在线阅读 下载PDF
E-learning与成人学习方法的改革 被引量:7
8
作者 冯花朴 《成人教育》 北大核心 2007年第2期89-91,共3页
从E-learning发展起因出发,探讨E-learning的特点,可见基于信息资源的学习(Resource-Based Learning)是E-learning的重要特征,可在此基础上根据成人教育的特点,对成人学习方法改革的意义及如何改革进行思考。
关键词 E-learning 成人 学习方法 元认知 信息素养
在线阅读 下载PDF
U-Learning中个性化内容提取方法 被引量:1
9
作者 苏雪 宋国新 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第2期233-238,共6页
提出了一种U-Learning中个性化内容提取方法,以帮助学生在泛在环境下获取个性化的学习对象。该方法可以在混合信息的基础上,按相似度的顺序生成个性化的搜索结果。使用学生的历史信息、当前地理位置信息及输入查询信息,用以过滤掉不相... 提出了一种U-Learning中个性化内容提取方法,以帮助学生在泛在环境下获取个性化的学习对象。该方法可以在混合信息的基础上,按相似度的顺序生成个性化的搜索结果。使用学生的历史信息、当前地理位置信息及输入查询信息,用以过滤掉不相关的搜索结果,提高泛在环境下学习内容的获取效率。 展开更多
关键词 泛在学习环境 个性化学习 内容提取方法
在线阅读 下载PDF
E-learning系统中学习评价的研究 被引量:11
10
作者 刘力红 王晓平 吴启迪 《计算机工程与应用》 CSCD 北大核心 2005年第34期52-53,88,共3页
针对目前E-learning系统中不能全面地对学员的学习情况进行评价的问题,提出了一个基于模糊综合评判法的E-learning学习评价综合评判模型,并用C语言对所提出的模型进行了程序实现。把学生的学习数据及运行结果进行对比分析可知:模糊综合... 针对目前E-learning系统中不能全面地对学员的学习情况进行评价的问题,提出了一个基于模糊综合评判法的E-learning学习评价综合评判模型,并用C语言对所提出的模型进行了程序实现。把学生的学习数据及运行结果进行对比分析可知:模糊综合评判法能综合考虑学员学习过程中表现出的各种因素,从而能得到更全面、更准确的评价结果。 展开更多
关键词 E-learning学习评价 模糊综合评判法 层次分析法
在线阅读 下载PDF
混合方法中的有声思维与刺激性回忆——基于Language Learning外刊文献中的口头报告数据 被引量:3
11
作者 刘婷婷 《河南师范大学学报(哲学社会科学版)》 CSSCI 北大核心 2019年第3期121-126,共6页
有声思维和刺激性回忆作为数据采集方式和数据分析对象已被融入应用语言学混合研究当中,其在混合设计中作为质化分析对象的情况仍然占有较大的比重。虽然我们可以像分析语篇那样对口头报告的内容进行质化分析,但其可被量化的特征也尤为... 有声思维和刺激性回忆作为数据采集方式和数据分析对象已被融入应用语言学混合研究当中,其在混合设计中作为质化分析对象的情况仍然占有较大的比重。虽然我们可以像分析语篇那样对口头报告的内容进行质化分析,但其可被量化的特征也尤为突出。在混合设计中,同步报告与量化分析、追溯报告与质化分析之间具有较强的关联性,而其在实验方法中,作为质化分析数据的情况更多。在口头报告仅用于质化分析的文献中,口头报告体现出了更强的传统内省数据的特征,并多被设计为混合研究中唯一或核心的质化分析对象。在口头报告仅用于量化分析的文献中,口头报告是两种或多种量化数据采集方式之中的一种。在口头报告用于混合设计时,质化分析往往只起到了解释或补充的作用,而口头报告构成的是核心或重要的量化数据来源,更多地体现出其在量化数据采集和分析中的作用。 展开更多
关键词 有声思维 刺激性回忆 语言学习 混合研究方法
在线阅读 下载PDF
具有不完全技术外部性的随机Learning-by-Doing模型及解法 被引量:1
12
作者 王海军 胡适耕 《华中师范大学学报(自然科学版)》 CAS CSCD 北大核心 2009年第3期359-362,共4页
提出适用于随机Learning-by-Doing模型的"附加效用"值函数解法,并用此方法求解具有不完全技术外部性的随机learning-by-doing模型,得到了均衡时的经济增长路径、消费—资本比和值函数,讨论了技术外部性对私人资本回报率、消... 提出适用于随机Learning-by-Doing模型的"附加效用"值函数解法,并用此方法求解具有不完全技术外部性的随机learning-by-doing模型,得到了均衡时的经济增长路径、消费—资本比和值函数,讨论了技术外部性对私人资本回报率、消费倾向、均值经济增长率和个体福利的影响. 展开更多
关键词 1earning—by-doing 内生增长 技术外部性 “附加效用”值函数法
在线阅读 下载PDF
Novel Newton’s learning algorithm of neural networks 被引量:2
13
作者 Long Ning Zhang Fengli 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第2期450-454,共5页
Newton's learning algorithm of NN is presented and realized. In theory, the convergence rate of learning algorithm of NN based on Newton's method must be faster than BP's and other learning algorithms, because the ... Newton's learning algorithm of NN is presented and realized. In theory, the convergence rate of learning algorithm of NN based on Newton's method must be faster than BP's and other learning algorithms, because the gradient method is linearly convergent while Newton's method has second order convergence rate. The fast computing algorithm of Hesse matrix of the cost function of NN is proposed and it is the theory basis of the improvement of Newton's learning algorithm. Simulation results show that the convergence rate of Newton's learning algorithm is high and apparently faster than the traditional BP method's, and the robustness of Newton's learning algorithm is also better than BP method' s. 展开更多
关键词 Newton's method Hesse matrix fast learning BP method neural network.
在线阅读 下载PDF
Kernel matrix learning with a general regularized risk functional criterion 被引量:3
14
作者 Chengqun Wang Jiming Chen +1 位作者 Chonghai Hu Youxian Sun 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第1期72-80,共9页
Kernel-based methods work by embedding the data into a feature space and then searching linear hypothesis among the embedding data points. The performance is mostly affected by which kernel is used. A promising way is... Kernel-based methods work by embedding the data into a feature space and then searching linear hypothesis among the embedding data points. The performance is mostly affected by which kernel is used. A promising way is to learn the kernel from the data automatically. A general regularized risk functional (RRF) criterion for kernel matrix learning is proposed. Compared with the RRF criterion, general RRF criterion takes into account the geometric distributions of the embedding data points. It is proven that the distance between different geometric distdbutions can be estimated by their centroid distance in the reproducing kernel Hilbert space. Using this criterion for kernel matrix learning leads to a convex quadratically constrained quadratic programming (QCQP) problem. For several commonly used loss functions, their mathematical formulations are given. Experiment results on a collection of benchmark data sets demonstrate the effectiveness of the proposed method. 展开更多
关键词 kernel method support vector machine kernel matrix learning HKRS geometric distribution regularized risk functional criterion.
在线阅读 下载PDF
Constrained voting extreme learning machine and its application 被引量:5
15
作者 MIN Mengcan CHEN Xiaofang XIE Yongfang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第1期209-219,共11页
Extreme learning machine(ELM)has been proved to be an effective pattern classification and regression learning mechanism by researchers.However,its good performance is based on a large number of hidden layer nodes.Wit... Extreme learning machine(ELM)has been proved to be an effective pattern classification and regression learning mechanism by researchers.However,its good performance is based on a large number of hidden layer nodes.With the increase of the nodes in the hidden layers,the computation cost is greatly increased.In this paper,we propose a novel algorithm,named constrained voting extreme learning machine(CV-ELM).Compared with the traditional ELM,the CV-ELM determines the input weight and bias based on the differences of between-class samples.At the same time,to improve the accuracy of the proposed method,the voting selection is introduced.The proposed method is evaluated on public benchmark datasets.The experimental results show that the proposed algorithm is superior to the original ELM algorithm.Further,we apply the CV-ELM to the classification of superheat degree(SD)state in the aluminum electrolysis industry,and the recognition accuracy rate reaches87.4%,and the experimental results demonstrate that the proposed method is more robust than the existing state-of-the-art identification methods. 展开更多
关键词 extreme learning machine(ELM) majority voting ensemble method sample based learning superheat degree(SD)
在线阅读 下载PDF
Fast image super-resolution algorithm based on multi-resolution dictionary learning and sparse representation 被引量:3
16
作者 ZHAO Wei BIAN Xiaofeng +2 位作者 HUANG Fang WANG Jun ABIDI Mongi A. 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第3期471-482,共12页
Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artif... Sparse representation has attracted extensive attention and performed well on image super-resolution(SR) in the last decade. However, many current image SR methods face the contradiction of detail recovery and artifact suppression. We propose a multi-resolution dictionary learning(MRDL) model to solve this contradiction, and give a fast single image SR method based on the MRDL model. To obtain the MRDL model, we first extract multi-scale patches by using our proposed adaptive patch partition method(APPM). The APPM divides images into patches of different sizes according to their detail richness. Then, the multiresolution dictionary pairs, which contain structural primitives of various resolutions, can be trained from these multi-scale patches.Owing to the MRDL strategy, our SR algorithm not only recovers details well, with less jag and noise, but also significantly improves the computational efficiency. Experimental results validate that our algorithm performs better than other SR methods in evaluation metrics and visual perception. 展开更多
关键词 single image super-resolution(SR) sparse representation multi-resolution dictionary learning(MRDL) adaptive patch partition method(APPM)
在线阅读 下载PDF
基于E-Learning的混合式学习在精神科护理学教学中的应用 被引量:25
17
作者 陈瑜 曾丽娟 +3 位作者 杨文娇 许妹仔 陈蔚臣 高源敏 《护理学杂志》 CSCD 北大核心 2018年第15期7-10,共4页
目的探讨基于E-Learning的混合式学习在精神科护理学教学中的应用效果。方法以2014级140名本科护生作为研究对象,在精神科护理学教学中采用基于E-Learning的混合式学习进行干预,干预前后选用课程评价调查问卷、护生自主学习能力量表、... 目的探讨基于E-Learning的混合式学习在精神科护理学教学中的应用效果。方法以2014级140名本科护生作为研究对象,在精神科护理学教学中采用基于E-Learning的混合式学习进行干预,干预前后选用课程评价调查问卷、护生自主学习能力量表、期末考试成绩进行效果评价。结果课程干预后,92.9%本科护生比较喜爱混合式学习,95.7%本科护生认为混合式学习对理解课程有帮助;本科护生的自主学习能力显著提高(均P<0.01);接受混合式学习课程的2014级本科护生的期末考试成绩显著高于常规课堂学习的2013级护生(P<0.05)。结论基于E-Learning的混合式学习可有效提高本科护生对精神科护理学的学习兴趣,提高其自主学习能力和学习效果。 展开更多
关键词 本科护生 精神科护理学 教学方法 网络数字化学习 混合式学习 自主学习能力
在线阅读 下载PDF
基于LEARNS模式构建维持性血液透析病人营养健康教育方案 被引量:5
18
作者 孟欣 李玉平 +3 位作者 李瑞 户俊凯 王桂华 张琳 《护理研究》 北大核心 2024年第19期3435-3441,共7页
目的:构建基于LEARNS模式的维持性血液透析病人营养健康教育方案,为临床实施“以病人为中心”的营养健康教育提供参考。方法:研究小组在文献研究、小组讨论基础上初步制定营养健康教育方案,采用德尔菲专家函询法对23名专家进行函询,结... 目的:构建基于LEARNS模式的维持性血液透析病人营养健康教育方案,为临床实施“以病人为中心”的营养健康教育提供参考。方法:研究小组在文献研究、小组讨论基础上初步制定营养健康教育方案,采用德尔菲专家函询法对23名专家进行函询,结合条目筛选标准和专家建议,利用层次分析法确定条目权重,构建基于LEARNS模式的维持性血液透析病人营养健康教育方案。结果:2轮咨询专家积极系数为100.0%和91.30%,权威系数为0.874和0.891;变异系数为0.00~0.38和0.00~0.22,肯德尔和谐系数为0.205和0.222(P<0.01)。最终形成包括3个一级条目、32个二级条目的维持性血液透析病人营养健康教育方案。层次分析各级条目一致性系数(CR值)均<0.1。结论:构建的维持性血液透析病人营养健康教育方案具有较高的科学性和可行性,可以为维持性血液透析病人营养健康教育提供借鉴。 展开更多
关键词 learnS模式 维持性血液透析 营养 健康教育 德尔菲法
在线阅读 下载PDF
Progressive transductive learning pattern classification via single sphere
19
作者 Xue Zhenxia Liu Sanyang Liu Wanli 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第3期643-650,共8页
In many machine learning problems, a large amount of data is available but only a few of them can be labeled easily. This provides a research branch to effectively combine unlabeled and labeled data to infer the label... In many machine learning problems, a large amount of data is available but only a few of them can be labeled easily. This provides a research branch to effectively combine unlabeled and labeled data to infer the labels of unlabeled ones, that is, to develop transductive learning. In this article, based on Pattern classification via single sphere (SSPC), which seeks a hypersphere to separate data with the maximum separation ratio, a progressive transductive pattern classification method via single sphere (PTSSPC) is proposed to construct the classifier using both the labeled and unlabeled data. PTSSPC utilize the additional information of the unlabeled samples and obtain better classification performance than SSPC when insufficient labeled data information is available. Experiment results show the algorithm can yields better performance. 展开更多
关键词 pattern recognition semi-supervised learning transductive learning CLASSIFICATION support vector machine support vector domain description.
在线阅读 下载PDF
Multi-label dimensionality reduction based on semi-supervised discriminant analysis
20
作者 李宏 李平 +1 位作者 郭跃健 吴敏 《Journal of Central South University》 SCIE EI CAS 2010年第6期1310-1319,共10页
Multi-label data with high dimensionality often occurs,which will produce large time and energy overheads when directly used in classification tasks.To solve this problem,a novel algorithm called multi-label dimension... Multi-label data with high dimensionality often occurs,which will produce large time and energy overheads when directly used in classification tasks.To solve this problem,a novel algorithm called multi-label dimensionality reduction via semi-supervised discriminant analysis(MSDA) was proposed.It was expected to derive an objective discriminant function as smooth as possible on the data manifold by multi-label learning and semi-supervised learning.By virtue of the latent imformation,which was provided by the graph weighted matrix of sample attributes and the similarity correlation matrix of partial sample labels,MSDA readily made the separability between different classes achieve maximization and estimated the intrinsic geometric structure in the lower manifold space by employing unlabeled data.Extensive experimental results on several real multi-label datasets show that after dimensionality reduction using MSDA,the average classification accuracy is about 9.71% higher than that of other algorithms,and several evaluation metrices like Hamming-loss are also superior to those of other dimensionality reduction methods. 展开更多
关键词 manifold learning semi-supervised learning (SSL) linear diseriminant analysis (LDA) multi-label classification dimensionality reduction
在线阅读 下载PDF
上一页 1 2 91 下一页 到第
使用帮助 返回顶部