期刊文献+
共找到79,418篇文章
< 1 2 250 >
每页显示 20 50 100
Enhanced battery life prediction with reduced data demand via semi-supervised representation learning
1
作者 Liang Ma Jinpeng Tian +2 位作者 Tieling Zhang Qinghua Guo Chi Yung Chung 《Journal of Energy Chemistry》 2025年第2期524-534,I0011,共12页
Accurate prediction of the remaining useful life(RUL)is crucial for the design and management of lithium-ion batteries.Although various machine learning models offer promising predictions,one critical but often overlo... Accurate prediction of the remaining useful life(RUL)is crucial for the design and management of lithium-ion batteries.Although various machine learning models offer promising predictions,one critical but often overlooked challenge is their demand for considerable run-to-failure data for training.Collection of such training data leads to prohibitive testing efforts as the run-to-failure tests can last for years.Here,we propose a semi-supervised representation learning method to enhance prediction accuracy by learning from data without RUL labels.Our approach builds on a sophisticated deep neural network that comprises an encoder and three decoder heads to extract time-dependent representation features from short-term battery operating data regardless of the existence of RUL labels.The approach is validated using three datasets collected from 34 batteries operating under various conditions,encompassing over 19,900 charge and discharge cycles.Our method achieves a root mean squared error(RMSE)within 25 cycles,even when only 1/50 of the training dataset is labelled,representing a reduction of 48%compared to the conventional approach.We also demonstrate the method's robustness with varying numbers of labelled data and different weights assigned to the three decoder heads.The projection of extracted features in low space reveals that our method effectively learns degradation features from unlabelled data.Our approach highlights the promise of utilising semi-supervised learning to reduce the data demand for reliability monitoring of energy devices. 展开更多
关键词 Lithium-ion batteries Battery degradation Remaining useful life semi-supervised learning
在线阅读 下载PDF
Semi-supervised surface defect detection of wind turbine blades with YOLOv4 被引量:1
2
作者 Chao Huang Minghui Chen Long Wang 《Global Energy Interconnection》 EI CSCD 2024年第3期284-292,共9页
Timely inspection of defects on the surfaces of wind turbine blades can effectively prevent unpredictable accidents.To this end,this study proposes a semi-supervised object-detection network based on You Only Looking ... Timely inspection of defects on the surfaces of wind turbine blades can effectively prevent unpredictable accidents.To this end,this study proposes a semi-supervised object-detection network based on You Only Looking Once version 4(YOLOv4).A semi-supervised structure comprising a generative adversarial network(GAN)was designed to overcome the difficulty in obtaining sufficient samples and sample labeling.In a GAN,the generator is realized by an encoder-decoder network,where the backbone of the encoder is YOLOv4 and the decoder comprises inverse convolutional layers.Partial features from the generator are passed to the defect detection network.Deploying several unlabeled images can significantly improve the generalization and recognition capabilities of defect-detection models.The small-scale object detection capacity of the network can be improved by enhancing essential features in the feature map by adding the concurrent spatial and channel squeeze and excitation(scSE)attention module to the three parts of the YOLOv4 network.A balancing improvement was made to the loss function of YOLOv4 to overcome the imbalance problem of the defective species.The results for both the single-and multi-category defect datasets show that the improved model can make good use of the features of the unlabeled images.The accuracy of wind turbine blade defect detection also has a significant advantage over classical object detection algorithms,including faster R-CNN and DETR. 展开更多
关键词 Defect detection Generative adversarial network scSE attention semi-supervision Wind turbine
在线阅读 下载PDF
A Graph-Based Semi-Supervised Approach for Few-Shot Class-Incremental Modulation Classification
3
作者 Zhou Xiaoyu Qi Peihan +3 位作者 Liu Qi Ding Yuanlei Zheng Shilian Li Zan 《China Communications》 SCIE CSCD 2024年第11期88-103,共16页
With the successive application of deep learning(DL)in classification tasks,the DL-based modulation classification method has become the preference for its state-of-the-art performance.Nevertheless,once the DL recogni... With the successive application of deep learning(DL)in classification tasks,the DL-based modulation classification method has become the preference for its state-of-the-art performance.Nevertheless,once the DL recognition model is pre-trained with fixed classes,the pre-trained model tends to predict incorrect results when identifying incremental classes.Moreover,the incremental classes are usually emergent without label information or only a few labeled samples of incremental classes can be obtained.In this context,we propose a graphbased semi-supervised approach to address the fewshot classes-incremental(FSCI)modulation classification problem.Our proposed method is a twostage learning method,specifically,a warm-up model is trained for classifying old classes and incremental classes,where the unlabeled samples of incremental classes are uniformly labeled with the same label to alleviate the damage of the class imbalance problem.Then the warm-up model is regarded as a feature extractor for constructing a similar graph to connect labeled samples and unlabeled samples,and the label propagation algorithm is adopted to propagate the label information from labeled nodes to unlabeled nodes in the graph to achieve the purpose of incremental classes recognition.Simulation results prove that the proposed method is superior to other finetuning methods and retrain methods. 展开更多
关键词 deep learning few-shot label propagation modulation classification semi-supervised learning
在线阅读 下载PDF
Research on Euclidean Algorithm and Reection on Its Teaching
4
作者 ZHANG Shaohua 《应用数学》 北大核心 2025年第1期308-310,共3页
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t... In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching. 展开更多
关键词 Euclid's algorithm Division algorithm Bezout's equation
在线阅读 下载PDF
Fusion Algorithm Based on Improved A^(*)and DWA for USV Path Planning
5
作者 Changyi Li Lei Yao Chao Mi 《哈尔滨工程大学学报(英文版)》 2025年第1期224-237,共14页
The traditional A^(*)algorithm exhibits a low efficiency in the path planning of unmanned surface vehicles(USVs).In addition,the path planned presents numerous redundant inflection waypoints,and the security is low,wh... The traditional A^(*)algorithm exhibits a low efficiency in the path planning of unmanned surface vehicles(USVs).In addition,the path planned presents numerous redundant inflection waypoints,and the security is low,which is not conducive to the control of USV and also affects navigation safety.In this paper,these problems were addressed through the following improvements.First,the path search angle and security were comprehensively considered,and a security expansion strategy of nodes based on the 5×5 neighborhood was proposed.The A^(*)algorithm search neighborhood was expanded from 3×3 to 5×5,and safe nodes were screened out for extension via the node security expansion strategy.This algorithm can also optimize path search angles while improving path security.Second,the distance from the current node to the target node was introduced into the heuristic function.The efficiency of the A^(*)algorithm was improved,and the path was smoothed using the Floyd algorithm.For the dynamic adjustment of the weight to improve the efficiency of DWA,the distance from the USV to the target point was introduced into the evaluation function of the dynamic-window approach(DWA)algorithm.Finally,combined with the local target point selection strategy,the optimized DWA algorithm was performed for local path planning.The experimental results show the smooth and safe path planned by the fusion algorithm,which can successfully avoid dynamic obstacles and is effective and feasible in path planning for USVs. 展开更多
关键词 Improved A^(*)algorithm Optimized DWA algorithm Unmanned surface vehicles Path planning Fusion algorithm
在线阅读 下载PDF
Retina algorithm for heavy-ion tracking in single-event effects localization
6
作者 Wen-Di Deng Jin-Chuan Wang +5 位作者 Hui-Peng Pan Wei Zhang Jian-Song Wang Fu-Qiang Wang Zi-Li Li Ren-Zhuo Wan 《Nuclear Science and Techniques》 2025年第6期123-135,共13页
This study presents a real-time tracking algorithm derived from the retina algorithm,designed for the rapid,real-time tracking of straight-line particle trajectories.These trajectories are detected by pixel detectors ... This study presents a real-time tracking algorithm derived from the retina algorithm,designed for the rapid,real-time tracking of straight-line particle trajectories.These trajectories are detected by pixel detectors to localize single-event effects in two-dimensional space.Initially,we developed a retina algorithm to track the trajectory of a single heavy ion and achieved a positional accuracy of 40μm.This was accomplished by analyzing trajectory samples from the simulations using a pixel sensor with a 72×72 pixel array and an 83μm pixel pitch.Subsequently,we refined this approach to create an iterative retina algorithm for tracking multiple heavy-ion trajectories in single events.This iterative version demonstrated a tracking efficiency of over 97%,with a positional resolution comparable to that of single-track events.Furthermore,it exhibits significant parallelism,requires fewer resources,and is ideally suited for implementation in field-programmable gate arrays on board-level systems,facilitating real-time online trajectory tracking. 展开更多
关键词 Single-event effects Retina algorithm Iterative retina algorithm Heavy ion Particle tracking
在线阅读 下载PDF
Energy Efficient Clustering and Sink Mobility Protocol Using Hybrid Golden Jackal and Improved Whale Optimization Algorithm for Improving Network Longevity in WSNs
7
作者 S B Lenin R Sugumar +2 位作者 J S Adeline Johnsana N Tamilarasan R Nathiya 《China Communications》 2025年第3期16-35,共20页
Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability... Reliable Cluster Head(CH)selectionbased routing protocols are necessary for increasing the packet transmission efficiency with optimal path discovery that never introduces degradation over the transmission reliability.In this paper,Hybrid Golden Jackal,and Improved Whale Optimization Algorithm(HGJIWOA)is proposed as an effective and optimal routing protocol that guarantees efficient routing of data packets in the established between the CHs and the movable sink.This HGJIWOA included the phases of Dynamic Lens-Imaging Learning Strategy and Novel Update Rules for determining the reliable route essential for data packets broadcasting attained through fitness measure estimation-based CH selection.The process of CH selection achieved using Golden Jackal Optimization Algorithm(GJOA)completely depends on the factors of maintainability,consistency,trust,delay,and energy.The adopted GJOA algorithm play a dominant role in determining the optimal path of routing depending on the parameter of reduced delay and minimal distance.It further utilized Improved Whale Optimisation Algorithm(IWOA)for forwarding the data from chosen CHs to the BS via optimized route depending on the parameters of energy and distance.It also included a reliable route maintenance process that aids in deciding the selected route through which data need to be transmitted or re-routed.The simulation outcomes of the proposed HGJIWOA mechanism with different sensor nodes confirmed an improved mean throughput of 18.21%,sustained residual energy of 19.64%with minimized end-to-end delay of 21.82%,better than the competitive CH selection approaches. 展开更多
关键词 Cluster Heads(CHs) Golden Jackal Optimization algorithm(GJOA) Improved Whale Optimization algorithm(IWOA) unequal clustering
在线阅读 下载PDF
Calculation algorithm for the space charge force of a train with infinite bunches
8
作者 San-Hai Ren Hong-Yu Li +5 位作者 Jia-Ru Shi Hao Zha Wei-Hang Gu Qiang Gao Qian Tan Huai-Bi Chen 《Nuclear Science and Techniques》 2025年第6期13-25,共13页
Industrial linear accelerators often contain many bunches when their pulse widths are extended to microseconds.As they typically operate at low electron energies and high currents,the interactions among bunches cannot... Industrial linear accelerators often contain many bunches when their pulse widths are extended to microseconds.As they typically operate at low electron energies and high currents,the interactions among bunches cannot be neglected.In this study,an algorithm is introduced for calculating the space charge force of a train with infinite bunches.By utilizing the ring charge model and the particle-in-cell(PIC)method and combining analytical and numerical methods,the proposed algorithm efficiently calculates the space charge force of infinite bunches,enabling the accurate design of accelerator parameters and a comprehensive understanding of the space charge force.This is a significant improvement on existing simulation software such as ASTRA and PARMELA that can only handle a single bunch or a small number of bunches.The PIC algorithm is validated in long drift space transport by comparing it with existing models,such as the infinite-bunch,ASTRA single-bunch,and PARMELA several-bunch algorithms.The space charge force calculation results for the external acceleration field are also verified.The reliability of the proposed algorithm provides a foundation for the design and optimization of industrial accelerators. 展开更多
关键词 Particle-in-cell method Space charge force algorithm Infinite bunches
在线阅读 下载PDF
Many-objective evolutionary algorithms based on reference-point-selection strategy for application in reactor radiation-shielding design
9
作者 Cheng-Wei Liu Ai-Kou Sun +4 位作者 Ji-Chong Lei Hong-Yu Qu Chao Yang Tao Yu Zhen-Ping Chen 《Nuclear Science and Techniques》 2025年第6期201-215,共15页
In recent years,the development of new types of nuclear reactors,such as transportable,marine,and space reactors,has presented new challenges for the optimization of reactor radiation-shielding design.Shielding struct... In recent years,the development of new types of nuclear reactors,such as transportable,marine,and space reactors,has presented new challenges for the optimization of reactor radiation-shielding design.Shielding structures typically need to be lightweight,miniaturized,and radiation-protected,which is a multi-parameter and multi-objective optimization problem.The conventional multi-objective(two or three objectives)optimization method for radiation-shielding design exhibits limitations for a number of optimization objectives and variable parameters,as well as a deficiency in achieving a global optimal solution,thereby failing to meet the requirements of shielding optimization for newly developed reactors.In this study,genetic and artificial bee-colony algorithms are combined with a reference-point-selection strategy and applied to the many-objective(having four or more objectives)optimal design of reactor radiation shielding.To validate the reliability of the methods,an optimization simulation is conducted on three-dimensional shielding structures and another complicated shielding-optimization problem.The numerical results demonstrate that the proposed algorithms outperform conventional shielding-design methods in terms of optimization performance,and they exhibit their reliability in practical engineering problems.The many-objective optimization algorithms developed in this study are proven to efficiently and consistently search for Pareto-front shielding schemes.Therefore,the algorithms proposed in this study offer novel insights into improving the shielding-design performance and shielding quality of new reactor types. 展开更多
关键词 Many-objective optimization problem Evolutionary algorithm Radiation-shielding design Reference-point-selection strategy
在线阅读 下载PDF
DDoS Attack Tracking Using Multi-Round Iterative Viterbi Algorithm in Satellite Internet
10
作者 Guo Wei Xu Jin +2 位作者 Pei Yukui Yin Liuguo Feng Wei 《China Communications》 2025年第3期148-163,共16页
Satellite Internet(SI)provides broadband access as a critical information infrastructure in 6G.However,with the integration of the terrestrial Internet,the influx of massive terrestrial traffic will bring significant ... Satellite Internet(SI)provides broadband access as a critical information infrastructure in 6G.However,with the integration of the terrestrial Internet,the influx of massive terrestrial traffic will bring significant threats to SI,among which DDoS attack will intensify the erosion of limited bandwidth resources.Therefore,this paper proposes a DDoS attack tracking scheme using a multi-round iterative Viterbi algorithm to achieve high-accuracy attack path reconstruction and fast internal source locking,protecting SI from the source.Firstly,to reduce communication overhead,the logarithmic representation of the traffic volume is added to the digests after modeling SI,generating the lightweight deviation degree to construct the observation probability matrix for the Viterbi algorithm.Secondly,the path node matrix is expanded to multi-index matrices in the Viterbi algorithm to store index information for all probability values,deriving the path with non-repeatability and maximum probability.Finally,multiple rounds of iterative Viterbi tracking are performed locally to track DDoS attack based on trimming tracking results.Simulation and experimental results show that the scheme can achieve 96.8%tracking accuracy of external and internal DDoS attack at 2.5 seconds,with the communication overhead at 268KB/s,effectively protecting the limited bandwidth resources of SI. 展开更多
关键词 DDoS tracking iterative Viterbi algorithm satellite Internet 6G
在线阅读 下载PDF
Research and Implementation of Trusted Blockchain Core Technology Based on State Secret Algorithm
11
作者 Zheng Qingan Meng Jialin +2 位作者 Wu Junjie Li Jingtao Lin Haonan 《China Communications》 2025年第4期143-160,共18页
With the rapid development of blockchain technology,the Chinese government has proposed that the commercial use of blockchain services in China should support the national encryption standard,also known as the state s... With the rapid development of blockchain technology,the Chinese government has proposed that the commercial use of blockchain services in China should support the national encryption standard,also known as the state secret algorithm GuoMi algorithm.The original Hyperledger Fabric only supports internationally common encryption algorithms,so it is particularly necessary to enhance support for the national encryption standard.Traditional identity authentication,access control,and security audit technologies have single-point failures,and data can be easily tampered with,leading to trust issues.To address these problems,this paper proposes an optimized and application research plan for Hyperledger Fabric.We study the optimization model of cryptographic components in Hyperledger Fabric,and based on Fabric's pluggable mechanism,we enhance the Fabric architecture with the national encryption standard.In addition,we research key technologies involved in the secure application protocol based on the blockchain.We propose a blockchain-based identity authentication protocol,detailing the design of an identity authentication scheme based on blockchain certificates and Fabric CA,and use a dual-signature method to further improve its security and reliability.Then,we propose a flexible,dynamically configurable real-time access control and security audit mechanism based on blockchain,further enhancing the security of the system. 展开更多
关键词 access control authentication Hyperledger Fabric security audit state secret algorithm
在线阅读 下载PDF
Altruistic Nurturing Algorithm for Multi-Objective Autonomous Underwater Vehicles Path Planning Problems
12
作者 Liu Min Chen Jianhong +4 位作者 Fan Xiaoping Ouyang Haibin Steven Li Zhang Chunliang Ding Weiping 《China Communications》 2025年第5期350-371,共22页
Solving the path planning problem of Autonomous Underwater Vehicles(AUVs)is crucial for reducing energy waste and improving operational efficiency.However,two main challenges hinder further development:Firstly,existin... Solving the path planning problem of Autonomous Underwater Vehicles(AUVs)is crucial for reducing energy waste and improving operational efficiency.However,two main challenges hinder further development:Firstly,existing algorithms often treat this as a single-objective optimization problem,whereas in reality,it should be multi-objective,considering factors such as distance,safety,and smoothness simultaneously.Secondly,the limited availability of optimization results arises due to they are single-path,which fail to meet real-world conditions.To address these challenges,first of all,an improved AUV path planning model is proposed,in which the collisions of path and obstacles are classified more specifically.Subsequently,a novel Altruistic Nurturing Algorithm(ANA)inspired by natural altruism is introduced.In the algorithm,nurturing cost considering Pareto rank and crowd distance is introduced as guidance of evolution to avoid futile calculation,abandonment threshold is self-adaptive with descendant situation to help individuals escape from local optima and double selection strategy combining crowd and k-nearest neighbors selection helps to get a better-distributed Pareto front.Experimental results comparing ANA with existing algorithms in AUV path planning demonstrate its superiority.Finally,a user-friendly interface,the Multi-Objective AUV Path Planner,is designed to provide users with a group of paths for informed decisionmaking. 展开更多
关键词 altruistic nurturing algorithm AUV path planning double selection strategy
在线阅读 下载PDF
Ship Path Planning Based on Sparse A^(*)Algorithm
13
作者 Yongjian Zhai Jianhui Cui +3 位作者 Fanbin Meng Huawei Xie Chunyan Hou Bin Li 《哈尔滨工程大学学报(英文版)》 2025年第1期238-248,共11页
An improved version of the sparse A^(*)algorithm is proposed to address the common issue of excessive expansion of nodes and failure to consider current ship status and parameters in traditional path planning algorith... An improved version of the sparse A^(*)algorithm is proposed to address the common issue of excessive expansion of nodes and failure to consider current ship status and parameters in traditional path planning algorithms.This algorithm considers factors such as initial position and orientation of the ship,safety range,and ship draft to determine the optimal obstacle-avoiding route from the current to the destination point for ship planning.A coordinate transformation algorithm is also applied to convert commonly used latitude and longitude coordinates of ship travel paths to easily utilized and analyzed Cartesian coordinates.The algorithm incorporates a hierarchical chart processing algorithm to handle multilayered chart data.Furthermore,the algorithm considers the impact of ship length on grid size and density when implementing chart gridification,adjusting the grid size and density accordingly based on ship length.Simulation results show that compared to traditional path planning algorithms,the sparse A^(*)algorithm reduces the average number of path points by 25%,decreases the average maximum storage node number by 17%,and raises the average path turning angle by approximately 10°,effectively improving the safety of ship planning paths. 展开更多
关键词 Sparse A^(*)algorithm Path planning RASTERIZATION Coordinate transformation Image preprocessing
在线阅读 下载PDF
An improved fluid flow algorithm for hydraulic fracturing:Optimizing domain volume and crack pressure update strategies
14
作者 Wei Zhang Jing Bi +3 位作者 Yu Zhao Yongfa Zhang Chaolin Wang Yang Pan 《International Journal of Mining Science and Technology》 2025年第4期639-657,共19页
With the widespread adoption of hydraulic fracturing technology in oil and gas resource development,improving the accuracy and efficiency of fracturing simulations has become a critical research focus.This paper propo... With the widespread adoption of hydraulic fracturing technology in oil and gas resource development,improving the accuracy and efficiency of fracturing simulations has become a critical research focus.This paper proposes an improved fluid flow algorithm,aiming to enhance the computational efficiency of hydraulic fracturing simulations while ensuring computational accuracy.The algorithm optimizes the aperture law and iteration criteria,focusing on improving the domain volume and crack pressure update strategy,thereby enabling precise capture of dynamic borehole pressure variations during injection tests.The effectiveness of the algorithm is verified through three flow-solid coupling cases.The study also analyzes the effects of borehole size,domain volume,and crack pressure update strategy on fracturing behavior.Furthermore,the performance of the improved algorithm in terms of crack propagation rate,micro-crack formation,and fluid pressure distribution was further evaluated.The results indicate that while large-size boreholes delay crack initiation,the cracks propagate more rapidly once formed.Additionally,the optimized domain volume calculation and crack pressure update strategy significantly shorten the pressure propagation stage,promote crack propagation,and improve computational efficiency. 展开更多
关键词 Hydraulic fracturing Fluid flow algorithm Domain volume optimization Crack pressure update Borehole size
在线阅读 下载PDF
Power forecasting method of ultra-short-term wind power cluster based on the convergence cross mapping algorithm
15
作者 Yuzhe Yang Weiye Song +5 位作者 Shuang Han Jie Yan Han Wang Qiangsheng Dai Xuesong Huo Yongqian Liu 《Global Energy Interconnection》 2025年第1期28-42,共15页
The development of wind power clusters has scaled in terms of both scale and coverage,and the impact of weather fluctuations on cluster output changes has become increasingly complex.Accurately identifying the forward... The development of wind power clusters has scaled in terms of both scale and coverage,and the impact of weather fluctuations on cluster output changes has become increasingly complex.Accurately identifying the forward-looking information of key wind farms in a cluster under different weather conditions is an effective method to improve the accuracy of ultrashort-term cluster power forecasting.To this end,this paper proposes a refined modeling method for ultrashort-term wind power cluster forecasting based on a convergent cross-mapping algorithm.From the perspective of causality,key meteorological forecasting factors under different cluster power fluctuation processes were screened,and refined training modeling was performed for different fluctuation processes.First,a wind process description index system and classification model at the wind power cluster level are established to realize the classification of typical fluctuation processes.A meteorological-cluster power causal relationship evaluation model based on the convergent cross-mapping algorithm is pro-posed to screen meteorological forecasting factors under multiple types of typical fluctuation processes.Finally,a refined modeling meth-od for a variety of different typical fluctuation processes is proposed,and the strong causal meteorological forecasting factors of each scenario are used as inputs to realize high-precision modeling and forecasting of ultra-short-term wind cluster power.An example anal-ysis shows that the short-term wind power cluster power forecasting accuracy of the proposed method can reach 88.55%,which is 1.57-7.32%higher than that of traditional methods. 展开更多
关键词 Ultra-short-term wind power forecasting Wind power cluster Causality analysis Convergence cross mapping algorithm
在线阅读 下载PDF
A novel heuristic pathfinding algorithm for 3D security modeling and vulnerability assessment
16
作者 Jun Yang Yue-Ming Hong +2 位作者 Yu-Ming Lv Hao-Ming Ma Wen-Lin Wang 《Nuclear Science and Techniques》 2025年第5期152-166,共15页
Vulnerability assessment is a systematic process to identify security gaps in the design and evaluation of physical protection systems.Adversarial path planning is a widely used method for identifying potential vulner... Vulnerability assessment is a systematic process to identify security gaps in the design and evaluation of physical protection systems.Adversarial path planning is a widely used method for identifying potential vulnerabilities and threats to the security and resilience of critical infrastructures.However,achieving efficient path optimization in complex large-scale three-dimensional(3D)scenes remains a significant challenge for vulnerability assessment.This paper introduces a novel A^(*)-algorithmic framework for 3D security modeling and vulnerability assessment.Within this framework,the 3D facility models were first developed in 3ds Max and then incorporated into Unity for A^(*)heuristic pathfinding.The A^(*)-heuristic pathfinding algorithm was implemented with a geometric probability model to refine the detection and distance fields and achieve a rational approximation of the cost to reach the goal.An admissible heuristic is ensured by incorporating the minimum probability of detection(P_(D)^(min))and diagonal distance to estimate the heuristic function.The 3D A^(*)heuristic search was demonstrated using a hypothetical laboratory facility,where a comparison was also carried out between the A^(*)and Dijkstra algorithms for optimal path identification.Comparative results indicate that the proposed A^(*)-heuristic algorithm effectively identifies the most vulnerable adversarial pathfinding with high efficiency.Finally,the paper discusses hidden phenomena and open issues in efficient 3D pathfinding for security applications. 展开更多
关键词 Physical protection system 3D modeling and simulation Vulnerability assessment A^(*)Heuristic Pathfinding Dijkstra algorithm
在线阅读 下载PDF
Fault diagnosis of electric transformers based on infrared image processing and semi-supervised learning 被引量:5
17
作者 Jian Fang Fan Yang +2 位作者 Rui Tong Qin Yu Xiaofeng Dai 《Global Energy Interconnection》 EI CAS CSCD 2021年第6期596-607,共12页
It is crucial to maintain the safe and stable operation of distribution transformers,which constitute a key part of power systems.In the event of transformer failure,the fault type must be diagnosed in a timely and ac... It is crucial to maintain the safe and stable operation of distribution transformers,which constitute a key part of power systems.In the event of transformer failure,the fault type must be diagnosed in a timely and accurate manner.To this end,a transformer fault diagnosis method based on infrared image processing and semi-supervised learning is proposed herein.First,we perform feature extraction on the collected infrared-image data to extract temperature,texture,and shape features as the model reference vectors.Then,a generative adversarial network(GAN)is constructed to generate synthetic samples for the minority subset of labelled samples.The proposed method can learn information from unlabeled sample data,unlike conventional supervised learning methods.Subsequently,a semi-supervised graph model is trained on the entire dataset,i.e.,both labeled and unlabeled data.Finally,we test the proposed model on an actual dataset collected from a Chinese electricity provider.The experimental results show that the use of feature extraction,sample generation,and semi-supervised learning model can improve the accuracy of transformer fault classification.This verifies the effectiveness of the proposed method. 展开更多
关键词 TRANSFORMER Fault diagnosis Infrared image Generative adversarial network semi-supervised learning
在线阅读 下载PDF
Labeling Malicious Communication Samples Based on Semi-Supervised Deep Neural Network 被引量:2
18
作者 Guolin Shao Xingshu Chen +1 位作者 Xuemei Zeng Lina Wang 《China Communications》 SCIE CSCD 2019年第11期183-200,共18页
The limited labeled sample data in the field of advanced security threats detection seriously restricts the effective development of research work.Learning the sample labels from the labeled and unlabeled data has rec... The limited labeled sample data in the field of advanced security threats detection seriously restricts the effective development of research work.Learning the sample labels from the labeled and unlabeled data has received a lot of research attention and various universal labeling methods have been proposed.However,the labeling task of malicious communication samples targeted at advanced threats has to face the two practical challenges:the difficulty of extracting effective features in advance and the complexity of the actual sample types.To address these problems,we proposed a sample labeling method for malicious communication based on semi-supervised deep neural network.This method supports continuous learning and optimization feature representation while labeling sample,and can handle uncertain samples that are outside the concerned sample types.According to the experimental results,our proposed deep neural network can automatically learn effective feature representation,and the validity of features is close to or even higher than that of features which extracted based on expert knowledge.Furthermore,our proposed method can achieve the labeling accuracy of 97.64%~98.50%,which is more accurate than the train-then-detect,kNN and LPA methodsin any labeled-sample proportion condition.The problem of insufficient labeled samples in many network attack detecting scenarios,and our proposed work can function as a reference for the sample labeling tasks in the similar real-world scenarios. 展开更多
关键词 sample LABELING MALICIOUS COMMUNICATION semi-supervised learning DEEP neural network LABEL propagation
在线阅读 下载PDF
Semi-supervised LIBS quantitative analysis method based on co-training regression model with selection of effective unlabeled samples 被引量:1
19
作者 Xiaomeng LI Huili LU +1 位作者 Jianhong YANG Fu CHANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2019年第3期114-124,共11页
The accuracy of laser-induced breakdown spectroscopy(LIBS) quantitative method is greatly dependent on the amount of certified standard samples used for training. However, in practical applications, only limited stand... The accuracy of laser-induced breakdown spectroscopy(LIBS) quantitative method is greatly dependent on the amount of certified standard samples used for training. However, in practical applications, only limited standard samples with labeled certified concentrations are available. A novel semi-supervised LIBS quantitative analysis method is proposed, based on co-training regression model with selection of effective unlabeled samples. The main idea of the proposed method is to obtain better regression performance by adding effective unlabeled samples in semisupervised learning. First, effective unlabeled samples are selected according to the testing samples by Euclidean metric. Two original regression models based on least squares support vector machine with different parameters are trained by the labeled samples separately, and then the effective unlabeled samples predicted by the two models are used to enlarge the training dataset based on labeling confidence estimation. The final predictions of the proposed method on the testing samples will be determined by weighted combinations of the predictions of two updated regression models. Chromium concentration analysis experiments of 23 certified standard high-alloy steel samples were carried out, in which 5 samples with labeled concentrations and 11 unlabeled samples were used to train the regression models and the remaining 7 samples were used for testing. With the numbers of effective unlabeled samples increasing, the root mean square error of the proposed method went down from 1.80% to 0.84% and the relative prediction error was reduced from 9.15% to 4.04%. 展开更多
关键词 LIBS EFFECTIVE unlabeled samples CO-TRAINING semi-supervised LABELING CONFIDENCE estimation
在线阅读 下载PDF
Detecting While Accessing:A Semi-Supervised Learning-Based Approach for Malicious Traffic Detection in Internet of Things 被引量:2
20
作者 Yantian Luo Hancun Sun +3 位作者 Xu Chen Ning Ge Wei Feng Jianhua Lu 《China Communications》 SCIE CSCD 2023年第4期302-314,共13页
In the upcoming large-scale Internet of Things(Io T),it is increasingly challenging to defend against malicious traffic,due to the heterogeneity of Io T devices and the diversity of Io T communication protocols.In thi... In the upcoming large-scale Internet of Things(Io T),it is increasingly challenging to defend against malicious traffic,due to the heterogeneity of Io T devices and the diversity of Io T communication protocols.In this paper,we propose a semi-supervised learning-based approach to detect malicious traffic at the access side.It overcomes the resource-bottleneck problem of traditional malicious traffic defenders which are deployed at the victim side,and also is free of labeled traffic data in model training.Specifically,we design a coarse-grained behavior model of Io T devices by self-supervised learning with unlabeled traffic data.Then,we fine-tune this model to improve its accuracy in malicious traffic detection by adopting a transfer learning method using a small amount of labeled data.Experimental results show that our method can achieve the accuracy of 99.52%and the F1-score of 99.52%with only 1%of the labeled training data based on the CICDDoS2019 dataset.Moreover,our method outperforms the stateof-the-art supervised learning-based methods in terms of accuracy,precision,recall and F1-score with 1%of the training data. 展开更多
关键词 malicious traffic detection semi-supervised learning Internet of Things(Io T) TRANSFORMER masked behavior model
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部