期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
基于多阶门控聚合网络的光学化学结构识别
1
作者 林帆 李建华 《计算机工程》 北大核心 2025年第8期364-372,共9页
在光学化学结构识别(OCSR)领域,现有基于深度学习的模型通常依赖于卷积神经网络(CNN)或视觉Transformer进行视觉特征提取,并采用Transformer进行序列解码。这些模型虽然有效,但仍受限于图像特征提取能力和解码时位置编码的精确性,从而... 在光学化学结构识别(OCSR)领域,现有基于深度学习的模型通常依赖于卷积神经网络(CNN)或视觉Transformer进行视觉特征提取,并采用Transformer进行序列解码。这些模型虽然有效,但仍受限于图像特征提取能力和解码时位置编码的精确性,从而影响识别效率。针对这些限制,将多阶门控聚合网络(MogaNet)和引入相对位置编码的Transformer构成的编码解码架构用于OCSR领域,提出一种基于多阶门控聚合网络的光学化学结构识别模型。该模型首先在图像特征提取时通过MogaNet空间聚合模块,捕获多尺度特征并减少特征冗余,并且通过MogaNet通道聚合模块改善通道维度的多样性;其次在序列解码时采用引入相对位置编码的Transformer作为解码器,精准捕捉序列单词之间的相对位置关系。为了训练和验证该模型,构建一个包含40万个分子的化学结构数据集,其中包含Markush结构与非Markush结构。实验结果表明,该模型的准确率达到了92.36%,优于其他现有的模型。 展开更多
关键词 光学化学结构识别 编码解码架构 深度学习 SMILES表达式 多阶门控聚合网络
在线阅读 下载PDF
融合编码器和视觉关键词搜索的图像中文描述
2
作者 孟繁聪 徐伟 +3 位作者 李海波 吴闽 郑竣杰 陈兴 《计算机应用与软件》 北大核心 2025年第4期208-216,244,共10页
针对当前已有模型缺乏对图像局部细节的关注以及趋向于通用型描述问题,提出一种采用融合编码器和视觉关键词搜索技术的图像中文描述方法。构建融合编码器,在一个卷积神经网络(CNN)中同时提取图像的局部和全局特征,丰富长短时记忆网络(LS... 针对当前已有模型缺乏对图像局部细节的关注以及趋向于通用型描述问题,提出一种采用融合编码器和视觉关键词搜索技术的图像中文描述方法。构建融合编码器,在一个卷积神经网络(CNN)中同时提取图像的局部和全局特征,丰富长短时记忆网络(LSTM)解码的语义信息;针对图像描述一般性表达,采用基于CNN的图像检索方法查找潜在视觉词汇,用于词向量解码;引入强化学习机制,在CIDEr评估指标上做句子层面上的优化,用以提高图像描述的词汇多样性。实验结果验证了所提方法的有效性。 展开更多
关键词 图像中文描述 编解码结构 注意力机制 图像检索 强化学习
在线阅读 下载PDF
基于分段注意力机制的时间序列预测模型
3
作者 王慧斌 胡展傲 +2 位作者 胡节 徐袁伟 文博 《计算机应用》 北大核心 2025年第7期2262-2268,共7页
针对时间序列分段后存在因采样间隔增大而导致的长期预测过程中局部依赖关系丢失的情况,提出一种基于分段注意力机制的时间序列预测模型(SAMformer)。首先,显式地将时间静态协变量与原始数据按比例融合,以增强数据的时域信息表征能力;其... 针对时间序列分段后存在因采样间隔增大而导致的长期预测过程中局部依赖关系丢失的情况,提出一种基于分段注意力机制的时间序列预测模型(SAMformer)。首先,显式地将时间静态协变量与原始数据按比例融合,以增强数据的时域信息表征能力;其次,同时引入两个连续的带偏置的线性层和一个激活函数来微调融合数据,从而提高模型对非线性数据的拟合能力;然后,在分段序列的每个段内引入点积注意力机制,以便捕获局部特征依赖关系;最后,利用跨尺度依赖的编码器-解码器架构预测时序数据。所提模型在公开的5个时间序列数据集上的实验结果表明,相较于Crossformer、 Pyraformer和Informer等其他监督学习时序预测模型,SAMformer的均方误差(MSE)和平均绝对误差(MAE)分别降低了2.0%~62.0%和0.9%~49.8%。此外,通过消融实验验证了所提不同组件的完备性和有效性,进一步说明了融合时域信息和段内注意力机制有助于提高时间序列预测的精度。 展开更多
关键词 深度神经网络 时间序列预测 时域信息融合 编码器-解码器架构 注意力机制
在线阅读 下载PDF
融合渐进式去雨网络的军用车辆检测算法
4
作者 苏胜君 仝秋红 +3 位作者 柴国庆 苏海东 王凯 胡待方 《现代电子技术》 北大核心 2025年第5期127-134,共8页
针对雨天场景下检测军用车辆目标时出现的精度退化问题,提出一种将渐进式去雨算法与高精确率检测器相融合的军用车辆检测方法。首先设计了一个图像去雨算法HISPNet,其包括轻量级高效雨纹特征提取模块和跨子网雨纹特征融合模块,捕获雨纹... 针对雨天场景下检测军用车辆目标时出现的精度退化问题,提出一种将渐进式去雨算法与高精确率检测器相融合的军用车辆检测方法。首先设计了一个图像去雨算法HISPNet,其包括轻量级高效雨纹特征提取模块和跨子网雨纹特征融合模块,捕获雨纹信息的同时缓解卷积过程中的细节特征丢失问题;其次引入SPPFCSPC模块改进了单阶段检测器,保证检测器感受野的同时提高了效率,增强了检测模型的表达能力。自建数据集中的实验结果表明,雨天场景下,相较于经典检测算法YOLOv7,所提算法的mAP@0.5、mAP@0.5:0.95分别提升了4.4%、2.8%,算法检测速度达到21.05 f/s,基本满足检测实时性要求,证明了所提算法的有效性与实用性。 展开更多
关键词 图像去雨 编码器-解码器架构 轻量级高效雨纹特征提取模块 跨子网雨纹特征融合模块 SPPFCSPC模块 军用车辆检测
在线阅读 下载PDF
基于混洗特征编码与门控解码的医学图像分割网络 被引量:2
5
作者 雷涛 张峻铭 +2 位作者 杜晓刚 闵重丹 杨子瑶 《电子学报》 CSCD 北大核心 2024年第12期4142-4152,共11页
针对医学图像分割领域长期存在的多目标尺度变化大和边界模糊以致分割困难的问题,提出了一种新型的基于混洗特征编码和门控解码的双分支混合网络框架用于多器官精准分割.为了充分利用卷积神经网络(Convolutional Neural Network,CNN)在... 针对医学图像分割领域长期存在的多目标尺度变化大和边界模糊以致分割困难的问题,提出了一种新型的基于混洗特征编码和门控解码的双分支混合网络框架用于多器官精准分割.为了充分利用卷积神经网络(Convolutional Neural Network,CNN)在局部信息提取方面和Transformer在长程依赖关系建模方面的优势,采用U-Net和SwinUnet构建双分支网络.该方法的创新之处在于对不同网络分支的多个阶段学习到的高维特征进行混洗操作,通过双支路通道交叉融合的方式实现局部信息与全局信息的高效融合,加强了双分支网络在不同阶段间的信息交互,从而解决了图像目标轮廓模糊引起的分割精度受限的问题.此外,为了解决多器官尺度变化大的问题,进一步提出了一种全新的基于多尺度特征图的门控解码器(Gated Decoder based on Multi-scale Feature,GDMF).该解码器能够学习网络不同阶段的多尺度高维特征并进行自适应特征增强,采用注意力机制和特征映射来辅助获取精准目标信息.实验结果表明,与现有主流医学图像分割方法相比,所提方法在ACDC(Automated Cardiac Diagnosis Challenge)和FLARE21(Fast and Low GPU memory Abdominal oRgan sEgmentation challenge 2021)数据集上均表现出更优的性能,有效解决了医学图像中多目标尺度变化大和边界模糊问题. 展开更多
关键词 医学图像分割 CNN-Transformer混合架构 混洗特征编码 门控解码
在线阅读 下载PDF
基于语义信息的无监督单目深度估计 被引量:1
6
作者 李颀 李煜哲 《传感器与微系统》 CSCD 北大核心 2024年第9期157-160,共4页
随着深度学习的发展,无监督单目深度估计成为计算机视觉的研究热点。由于深度图存在轮廓不清晰、深度估计不准确等问题,以编—解码器结构为基础,提出一种基于语义信息的无监督单目深度估计网络,为了获取更为清晰的轮廓信息,本文在编解... 随着深度学习的发展,无监督单目深度估计成为计算机视觉的研究热点。由于深度图存在轮廓不清晰、深度估计不准确等问题,以编—解码器结构为基础,提出一种基于语义信息的无监督单目深度估计网络,为了获取更为清晰的轮廓信息,本文在编解码器之间通过空洞空间卷积池化金字塔(ASPP)层进行语义信息的细化,提高生成的图像质量;该网络通过在编码器到解码器的跳层连接实现对多分辨率特征的提取,在编码器部分采用改进的高分辨率网络(HRNet)融合不同层的多分辨率特征,在解码前使用串联策略融合中间阶段的输出,提高深度估计的准确率。在KITTI数据集上的实验结果表明,本文方法的误差评价指标相较于目前的深度估计方法更低,在3个深度估计准确率评价指标上达到了89.4%,96.3%,98.1%,具有较好的准确性。 展开更多
关键词 深度估计 无监督学习 多分辨率特征 语义信息 编—解码结构
在线阅读 下载PDF
基于编-解码器结构的无人机群多任务联邦学习
7
作者 周敬轩 包卫东 +1 位作者 王吉 张大宇 《西南交通大学学报》 EI CSCD 北大核心 2024年第4期933-941,共9页
针对传统联邦学习在无人机群应用中的局限性——要求所有参与者执行相同任务并拥有相同的模型结构,本文探索一种适用于无人机群的多任务联邦学习方法,设计一种新的编-解码器架构,以加强执行不同任务的无人机之间的知识共享.首先,为执行... 针对传统联邦学习在无人机群应用中的局限性——要求所有参与者执行相同任务并拥有相同的模型结构,本文探索一种适用于无人机群的多任务联邦学习方法,设计一种新的编-解码器架构,以加强执行不同任务的无人机之间的知识共享.首先,为执行相同任务的无人机建立直接的知识分享机制,通过直接聚合方式实现同任务知识的有效融合;其次,对于执行不同任务的无人机,从所有无人机的编-解码器架构中提取编码器部分,构建一个全局编码器;最后,在训练环节,将本地编码器和全局编码器的信息整合到损失函数中,并通过迭代更新使本地解码器逐步逼近全局解码器,从而实现跨任务间的知识高效共享.实验结果表明:相较于传统方法,所提出的方法使无人机群在3个单任务上的性能分别提升1.79%、0.37%和2.78%,仅在1个任务上性能略微下降0.38%,但整体性能仍提升2.38%. 展开更多
关键词 多任务学习 无人机群 联邦学习 编-解码器结构
在线阅读 下载PDF
多粒度空间注意力与空间先验监督的DETR
8
作者 廖峻霜 谭钦红 《计算机科学》 CSCD 北大核心 2024年第6期239-246,共8页
近年来,Transformer在视觉领域的表现卓越,由于其优秀的全局建模能力以及可媲美CNN的性能表现受到了广泛关注。DETR(Detection Transformer)是在其基础上研究的首个在目标检测任务上采用Transformer架构的端到端网络,但是其全局范围内... 近年来,Transformer在视觉领域的表现卓越,由于其优秀的全局建模能力以及可媲美CNN的性能表现受到了广泛关注。DETR(Detection Transformer)是在其基础上研究的首个在目标检测任务上采用Transformer架构的端到端网络,但是其全局范围内的等价建模以及目标查询键的无差别性导致其训练收敛缓慢,且性能表现欠佳。针对上述问题,利用多粒度的注意力机制替换DETR的encoder中的自注意力以及decoder中的交叉注意力,在距离近的token之间使用细粒度,在距离远的token之间使用粗粒度,增强其建模能力;并在decoder中的交叉注意力中引入空间先验限制对网络训练进行监督,使其训练收敛速度得以加快。实验结果表明,在引入多粒度的注意力机制和空间先验监督后,相较于未改进的DETR,所提改进模型在PASCAL VOC2012数据集上的识别准确度提升了16%,收敛速度快了2倍。 展开更多
关键词 多粒度空间注意力 空间先验监督 目标检测 视觉Transformer 编解码架构
在线阅读 下载PDF
基于编码器-解码器架构的藏医药文本实体关系联合抽取
9
作者 高兴 拥措 《高原科学研究》 CSCD 2024年第4期115-128,共14页
在藏医药领域,准确提取医学文本中的医学实体及其关系并结构化为三元组,对于构建藏医药知识图谱具有重要意义。然而,现有方法主要依赖通用预训练模型处理藏医药文本,这些模型未能充分覆盖藏医药领域的专业术语,且在泛化性和鲁棒性方面... 在藏医药领域,准确提取医学文本中的医学实体及其关系并结构化为三元组,对于构建藏医药知识图谱具有重要意义。然而,现有方法主要依赖通用预训练模型处理藏医药文本,这些模型未能充分覆盖藏医药领域的专业术语,且在泛化性和鲁棒性方面存在不足。为此,文章提出了一种新型模型,该模型基于编码器-解码器架构,并融合了指针机制。在编码阶段,BERT和GloVe被用于生成丰富的嵌入表示,这些表示经过融合,增强了模型对医学领域文本的理解力;在解码阶段,通过将Transformer解码器和指针机制结合,模型直接生成与实体和关系相关的结构化信息。此外,文章通过引入“相似跨度”的概念和相应的惩罚性训练策略,进一步增强了模型识别实体的能力。通过在CMeIE-V2和藏医药数据集TibetanAI_TMDisRE_v1.0上进行广泛实验,并与基线模型进行对比,验证了文章模型的卓越性能和鲁棒性。 展开更多
关键词 编码器-解码器架构 指针机制 藏医药文本 实体关系联合抽取
在线阅读 下载PDF
图像描述生成研究进展 被引量:8
10
作者 李志欣 魏海洋 +2 位作者 张灿龙 马慧芳 史忠植 《计算机研究与发展》 EI CSCD 北大核心 2021年第9期1951-1974,共24页
图像描述生成结合了计算机视觉和自然语言处理2个研究领域,不仅要求完备的图像语义理解,还要求复杂的自然语言表达,是进一步研究符合人类感知的视觉智能的关键任务.对图像描述生成的研究进展做了回顾.首先,归纳分析了当前基于深度学习... 图像描述生成结合了计算机视觉和自然语言处理2个研究领域,不仅要求完备的图像语义理解,还要求复杂的自然语言表达,是进一步研究符合人类感知的视觉智能的关键任务.对图像描述生成的研究进展做了回顾.首先,归纳分析了当前基于深度学习的图像描述生成方法涉及的5个关键技术,包括整体架构、学习策略、特征映射、语言模型和注意机制.然后,按照发展进程将现有的图像描述生成方法分为四大类,即基于模板的方法、基于检索的方法、基于编码器-解码器架构的方法和基于复合架构的方法,并阐述了各类方法的基本概念、代表性方法和研究现状,重点讨论了基于编码器-解码器架构的各种方法及其创新思路,如多模态空间、视觉空间、语义空间、注意机制、模型优化等.接着,从实验的角度给出图像描述生成的常用数据集和评估措施,并在2个基准数据集上比较了一些典型方法的性能.最后,以提升图像描述的准确性、完整性、新颖性、多样性为依据,展示了图像描述生成的未来发展趋势. 展开更多
关键词 图像描述生成 编码器-解码器架构 复合架构 注意机制 卷积神经网络 循环神经网络 长短期记忆网络
在线阅读 下载PDF
基于DBSE-Net的大田稻穗图像分割 被引量:3
11
作者 宋余庆 杨东川 +1 位作者 徐立章 刘哲 《农业工程学报》 EI CAS CSCD 北大核心 2022年第13期202-209,共8页
稻穗精准分割是准确估测水稻产量的关键。为实现大田环境下不同品种与生育期稻穗的准确分割,该研究提出了基于注意力机制的稻穗分割网络(Double Branch Squeeze-and-Excitation Network,DBSE-Net)。首先,提出一个双分支压缩与激励(Doubl... 稻穗精准分割是准确估测水稻产量的关键。为实现大田环境下不同品种与生育期稻穗的准确分割,该研究提出了基于注意力机制的稻穗分割网络(Double Branch Squeeze-and-Excitation Network,DBSE-Net)。首先,提出一个双分支压缩与激励(DoubleBranchSqueeze-and-Excitation,DBSE)注意力模块,通过同时使用全局平均池化(GlobalAverage Pooling,GAP)和全局最大池化(Global Max Pooling,GMP)编码输入特征的通道信息,以实现更精准的通道注意力推断。然后,为了强化稻穗特征并抑制背景区域特征,将DBSE模块添加到编码-解码分割框架中构建DBSE-Net分割网络。最后,在自采集的稻穗图像数据集上进行分割性能测试,DBSE-Net对稻穗分割的像素准确率、平均交并比和F1分数分别达到了94.32%、87.59%和91.86%,比次优模型DeepLabv3+的结果分别高出1.61、2.56和1.20个百分点,在单张256×256(像素)图像上耗时0.03s,是DeepLabv3+分割速度的5.3倍。在公开的稻穗图像数据集上进行泛化性能测试,DBSE-Net能够有效分割出稻穗区域。该研究结果表明,DBSE-Net能够对不同品种与生育期稻穗实现高效精准分割,具有良好的泛化性,可以为水稻产量评估提供参考。 展开更多
关键词 模型 图像分割 卷积神经网络 稻穗 编码-解码结构 注意力机制
在线阅读 下载PDF
基于双注意模型的图像描述生成方法研究 被引量:9
12
作者 卓亚琦 魏家辉 李志欣 《电子学报》 EI CAS CSCD 北大核心 2022年第5期1123-1130,共8页
现有图像描述生成方法的注意模型通常采用单词级注意,从图像中提取局部特征作为生成当前单词的视觉信息输入,缺乏准确的图像全局信息指导.针对这个问题,提出基于语句级注意的图像描述生成方法,通过自注意机制从图像中提取语句级的注意信... 现有图像描述生成方法的注意模型通常采用单词级注意,从图像中提取局部特征作为生成当前单词的视觉信息输入,缺乏准确的图像全局信息指导.针对这个问题,提出基于语句级注意的图像描述生成方法,通过自注意机制从图像中提取语句级的注意信息,来表示生成语句所需的图像全局信息.在此基础上,结合语句级注意和单词级注意进一步提出了双注意模型,以此来生成更准确的图像描述.通过在模型的中间阶段实施监督和优化,以解决信息间的干扰问题.此外,将强化学习应用于两阶段的训练来优化模型的评估度量.通过在MSCOCO和Flickr30K两个基准数据集上的实验评估,结果表明本文提出的方法能够生成更加准确和丰富的描述语句,并且在各项评价指标上优于现有的多种基于注意机制的方法. 展开更多
关键词 图像描述生成 编码器-解码器架构 单词级注意 语句级注意 双注意模型 强化学习
在线阅读 下载PDF
基于编解码双路卷积神经网络的视觉自定位方法 被引量:3
13
作者 贾瑞明 刘圣杰 +2 位作者 李锦涛 王赟豪 潘海侠 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2019年第10期1965-1972,共8页
为了从单张RGB图像估计出相机的位姿信息,提出了一种深度编解码双路卷积神经网络(CNN),提升了视觉自定位的精度。首先,使用编码器从输入图像中提取高维特征;然后,使用解码器提升特征的空间分辨率;最后,通过多尺度位姿预测器输出位姿参... 为了从单张RGB图像估计出相机的位姿信息,提出了一种深度编解码双路卷积神经网络(CNN),提升了视觉自定位的精度。首先,使用编码器从输入图像中提取高维特征;然后,使用解码器提升特征的空间分辨率;最后,通过多尺度位姿预测器输出位姿参数。由于位置和姿态的特性不同,网络从解码器开始采用双路结构,对位置和姿态分别进行处理,并且在编解码之间增加跳跃连接以保持空间信息。实验结果表明:所提网络的精度与目前同类型算法相比有明显提升,其中相机姿态角度精度有较大提升。 展开更多
关键词 视觉自定位 编解码结构 卷积神经网络(CNN) 跳跃连接 双路网络
在线阅读 下载PDF
基于深度学习的页岩气压裂砂堵事故预警方法 被引量:10
14
作者 胡瑾秋 张尚尚 +1 位作者 曾然 刘泽宇 《中国安全科学学报》 CAS CSCD 北大核心 2020年第9期108-114,共7页
为预警页岩气压裂施工过程中砂堵事故,降低压裂施工成本,提出一种基于深度学习的压裂砂堵事故早期预警方法。首先,在分析压裂施工参数特征工程和数据基础上,采用长短时记忆神经网络(LSTM)算法,并引入编码-解码器结构,建立多变量时间序... 为预警页岩气压裂施工过程中砂堵事故,降低压裂施工成本,提出一种基于深度学习的压裂砂堵事故早期预警方法。首先,在分析压裂施工参数特征工程和数据基础上,采用长短时记忆神经网络(LSTM)算法,并引入编码-解码器结构,建立多变量时间序列预测模型;然后,利用该模型的综合压力参数及其他与压力参数相关性强的施工参数,挖掘、分析时间序列数据中隐含的信息;最后,以某段页岩气压裂数据为实际算例,比较LSTM和自回归移动平均(ARIMA)模型的预测结果。研究结果表明:与传统预测模型相比,LSTM网络模型能更准确地预测压裂施工曲线的变化趋势,预测精度提高21.75%;相比于人工判别传统预测模型,LSTM网络模型预测时间得到大幅提前。 展开更多
关键词 深度学习 页岩气压裂 砂堵事故 长短时记忆神经网络(LSTM) 编码-解码器 施工曲线
在线阅读 下载PDF
基于FPGA的空时编译码器实现 被引量:1
15
作者 包涛 张会生 董群峰 《西北工业大学学报》 EI CAS CSCD 北大核心 2012年第1期17-21,共5页
基于高速多输入多输出(Multi-input Multi-output,MIMO)系统中的空时编码技术,提出了一种能够在现场可编程门阵列(Field Programmable Gate Array,FPGA)上实现空时码编译码器的硬件实现方法,并给出了编译码过程中各步骤的实现过程。采... 基于高速多输入多输出(Multi-input Multi-output,MIMO)系统中的空时编码技术,提出了一种能够在现场可编程门阵列(Field Programmable Gate Array,FPGA)上实现空时码编译码器的硬件实现方法,并给出了编译码过程中各步骤的实现过程。采用该方法设计的编译码器具有控制单元简单、模块结构规则,易于FPGA实现,可用于高速场合等特点。仿真分析表明,硬件实现的性能与理论性能接近。 展开更多
关键词 信道编码 空时码 编码器 译码器
在线阅读 下载PDF
基于自适应融合和注意力细化的语义分割模型
16
作者 魏赟 罗琦 赵迎志 《系统仿真学报》 CAS CSCD 北大核心 2023年第6期1226-1234,共9页
针对现有语义分割中存在的上下文信息利用不足和细节信息丢失等问题,提出了一种基于自适应融合和注意力细化的语义分割模型。该模型在编码的过程中引入一个自适应融合模块,通过让每个特征图按照相应的权重进行融合的方式来解决上下文信... 针对现有语义分割中存在的上下文信息利用不足和细节信息丢失等问题,提出了一种基于自适应融合和注意力细化的语义分割模型。该模型在编码的过程中引入一个自适应融合模块,通过让每个特征图按照相应的权重进行融合的方式来解决上下文信息利用不足的问题。在解码的过程中设计了一个注意力细化模块,使低阶特征与高阶特征之间能够进行相互指导优化,从而解决细节信息丢失的问题。实验结果表明:该模型在PASCAL VOC 2012数据集上的平均交并比达到了83.7%,比基于编解码的语义分割模型提高了1.1%;在Cityscapes数据集上取得了81.7%的平均交并比,进一步验证了该模型的泛化性。 展开更多
关键词 语义分割 金字塔池化 注意力机制 自适应融合 编码-解码架构
在线阅读 下载PDF
ED-NAS:基于神经网络架构搜索的陶瓷晶粒SEM图像分割方法 被引量:8
17
作者 蔡超丽 李纯纯 +1 位作者 黄琳 杨铁军 《电子学报》 EI CAS CSCD 北大核心 2022年第2期461-469,共9页
为了提高深度卷积神经网络(Convolutional Neural Network,CNN)设计的自动化程度并进一步提高陶瓷晶粒扫描电子显微镜(Scanning Electron Microscope,SEM)图像分割的准确性,提出了一种基于神经网络架构搜索的陶瓷晶粒图像分割方法 .该... 为了提高深度卷积神经网络(Convolutional Neural Network,CNN)设计的自动化程度并进一步提高陶瓷晶粒扫描电子显微镜(Scanning Electron Microscope,SEM)图像分割的准确性,提出了一种基于神经网络架构搜索的陶瓷晶粒图像分割方法 .该方法设计多分支结构编码空间和链式结构解码空间,并构造多分支结构编码Cell和链式结构解码Cell;同时基于强化学习分别搜索最佳编码Cell和解码Cell;此外,基于编码-解码神经网络架构堆叠最佳Cell构建陶瓷晶粒图像分割CNN,并采用池化索引在解码阶段恢复丢失的细节信息.实验在包含了629张的陶瓷晶粒SEM图像数据集上进行,搜索最佳Cell耗时约148 GPU-时.与U-Net、SegNet等SOTA方法相比,该方法在陶瓷晶粒测试集上获得了更高的分割准确性(mIoU≈68.9%). 展开更多
关键词 神经网络架构搜索 编码-解码神经网络架构 陶瓷晶粒 图像分割 编码Cell 解码Cell
在线阅读 下载PDF
基于门控循环图卷积网络的交通流预测 被引量:6
18
作者 汪鸣 彭舰 黄飞虎 《计算机应用研究》 CSCD 北大核心 2022年第8期2301-2305,共5页
交通流预测在智能交通系统的建设中起着关键性的作用,然而现有预测方法无法准确地挖掘其潜在的时空相关性,而且大多采用全连接网络进行单步预测。为了进一步挖掘数据的时空特性以及提升长短期预测的精度,提出了一种门控循环图卷积网络(G... 交通流预测在智能交通系统的建设中起着关键性的作用,然而现有预测方法无法准确地挖掘其潜在的时空相关性,而且大多采用全连接网络进行单步预测。为了进一步挖掘数据的时空特性以及提升长短期预测的精度,提出了一种门控循环图卷积网络(GR-GCN)模型。首先,利用频域上的图卷积结合门控循环单元(GRU)构建一个时空组件(STC)以同时捕获节点的时空相关性,充分地提取数据的时空特征;然后,利用该时空组件构成编码器单元,并将时间序列数据和路网结构数据输入其中;最后,使用门控循环单元作为解码器单元,并按照时间顺序将两者组成一个编码器-解码器(encoder-decoder)结构,依次解码出每个时刻的预测结果。在加利福尼亚交通局(Caltrans)性能评估系统中高速公路数据集PeMSD4和PeMSD8进行了实验。结果表明,所提模型GR-GCN在预测未来15 min、30 min、45 min和60 min的交通流量方面优于大多数现有基准模型,尤其是在长期预测方面。 展开更多
关键词 交通流量预测 图卷积网络 门控循环单元 编码解码结构
在线阅读 下载PDF
结构化LDPC码的高速编译码器FPGA实现 被引量:2
19
作者 王文君 朱晓暄 +1 位作者 康桂霞 张平 《数据采集与处理》 CSCD 北大核心 2008年第B09期113-118,共6页
提出一种高吞吐量、低复杂度、可扩展的非正则低密度校验(Low density parity check,LDPC)码准并行编码结构及译码结构及其实现方案,该编码结构和译码结构针对不同码长的非正则结构化LDPC码可进行相应扩展。通过对编译码算法、优化编译... 提出一种高吞吐量、低复杂度、可扩展的非正则低密度校验(Low density parity check,LDPC)码准并行编码结构及译码结构及其实现方案,该编码结构和译码结构针对不同码长的非正则结构化LDPC码可进行相应扩展。通过对编译码算法、优化编译码结构进行调整,降低了编译码器硬件实现中的关键路径迟延,并采用Xilinx公司的Virtex-4 VLX80 FPGA芯片实现了一个码长10 240,码率1/2的非正则结构化LDPC码编码器和译码器。实现结果表明:该编码器信息吞吐量为1.878 Gb/s,该译码器在采用18次迭代情况下信息吞吐量可达223 Mb/s。 展开更多
关键词 结构化低密度校验码 非规则 FPGA实现 准并行编译码结构
在线阅读 下载PDF
深度神经网络图像描述综述 被引量:14
20
作者 许昊 张凯 +2 位作者 田英杰 种法广 王子超 《计算机工程与应用》 CSCD 北大核心 2021年第9期9-22,共14页
深度学习的迅速发展使得图像描述效果得到显著提升,针对基于深度神经网络的图像描述方法及其研究现状进行详细综述。图像描述算法结合计算机视觉和自然语言处理的知识,根据图像中检测到的内容自动生成自然语言描述,是场景理解的重要部... 深度学习的迅速发展使得图像描述效果得到显著提升,针对基于深度神经网络的图像描述方法及其研究现状进行详细综述。图像描述算法结合计算机视觉和自然语言处理的知识,根据图像中检测到的内容自动生成自然语言描述,是场景理解的重要部分。图像描述任务中,一般采用由编码器和解码器组成的基本架构。改进编码器或解码器,应用生成对抗网络、强化学习、无监督学习以及图卷积神经网络等方法能有效提高图像描述算法的性能。对每类方法的代表模型算法的效果以及优缺点进行分析,并介绍适用的公开数据集,在此基础上进行对比实验。对图像描述面临的挑战以及未来工作的发展方向做出展望。 展开更多
关键词 深度神经网络 计算机视觉 图像描述 编码器-解码器架构 注意力机制
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部