For the purpose of satisfying high demands for taste,color,flavor,and storage of meat products,water retention agents(WRAs)play an important role.Phosphate has been widely used as an attractive functional material for...For the purpose of satisfying high demands for taste,color,flavor,and storage of meat products,water retention agents(WRAs)play an important role.Phosphate has been widely used as an attractive functional material for water retention in current practical applications.However,excessive phosphate addition and longterm consumption may be harmful impacts on health and the environment.Therefore,it is vital to develop safe and efficient phosphate-free WRAs for further improving water-holding capacity(WHC)efficacy and edible safety,especially in meat products.In particular,sugar water retention agents(SWRAs)are increasingly popular because of their perfect safety,excellent WHC,and superior biological properties.This review discusses the inducements and mechanisms underlying water loss in meat products.In addition,we focused on the research progresses and related mechanisms of SWRAs in the WHC of meat products and its unique biological functions,as well as the extraction technology.Finally,the future application and development of SWRA were prospected.展开更多
In order to save manpower and time costs,and to achieve simultaneous detection of multiple animal-derived components in meat and meat products,this study used multiple nucleotide polymorphism(MNP)marker technology bas...In order to save manpower and time costs,and to achieve simultaneous detection of multiple animal-derived components in meat and meat products,this study used multiple nucleotide polymorphism(MNP)marker technology based on the principle of high-throughput sequencing,and established a multi-locus 10 animalderived components identification method of cattle,goat,sheep,donkey,horse,chicken,duck,goose,pigeon,quail in meat and meat products.The specific loci of each species could be detected and the species could be accurately identified,including 5 loci for cattle and duck,3 loci for sheep,9 loci for chicken and horse,10 loci for goose and pigeon,6 loci for quail and 1 locus for donkey and goat,and an adulteration model was established to simulate commercially available samples.The results showed that the method established in this study had high throughput,good repeatability and accuracy,and was able to identify 10 animalderived components simultaneously with 100%repeatability accuracy.The detection limit was 0.1%(m/m)in simulated samples of chicken,duck and horse.Using the method established in this study to test commercially available samples,4 samples from 14 commercially available samples were detected to be inconsistent with the labels,of which 2 did not contain the target ingredient and 2 were adulterated with small amounts of other ingredients.展开更多
Heat processing of food has been well validated as the trigger to generate heat-processing side product of advanced lipoxidation end products(ALEs),which potentially engenders the threat on systemic health or progress...Heat processing of food has been well validated as the trigger to generate heat-processing side product of advanced lipoxidation end products(ALEs),which potentially engenders the threat on systemic health or progression of diseases,especially the accumulated effect after long-term intake.Thus,the study was proposed to evaluate the effect of dietary ALEs on health after long-term ingestion,specifically through simulating the intake of dietary ALE in mice within 9 months to investigate the intervention effect and underlying mechanism.The unexpected observation of renal insufficiency or impairment after long-term intake of dietary ALEs indicated the negative impact on renal health,which has been verified by the pathological analysis.Further studies revealed that a high-ALEs diet disrupted the intestinal barrier,with enhanced impact after disturbing the gut microbiota to potentially lower the abundance of beneficial microbiome through producing nephrotoxic metabolites.Correlation analysis showed that the proliferation of harmful bacteria and the reduction of beneficial bacteria were strongly correlated with intestinal barrier damage and the development of renal insufficiency.Furthermore,the underlying mechanism was unveiled as that ALEs could inhibit AMPK/SIRT1 signaling to fundamentally induce renal inflammation and oxidative stress.Thus,it was revealed that long-term intake of dietary ALE could result in renal impairment,and the results emphasized the control or intervention on dietary ALE to decrease to accumulated impairment on systemic health.展开更多
Plastic,renowned for its versatility,durability,and cost-effectiveness,is indispensable in modern society.Nevertheless,the annual production of nearly 400 million tons of plastic,coupled with a recycling rate of only ...Plastic,renowned for its versatility,durability,and cost-effectiveness,is indispensable in modern society.Nevertheless,the annual production of nearly 400 million tons of plastic,coupled with a recycling rate of only 9%,has led to a monumental environmental crisis.Plastic recycling has emerged as a vital response to this crisis,offering sustainable solutions to mitigate its environmental impact.Among these recycling efforts,plastic upcycling has garnered attention,which elevates discarded plastics into higher-value products.Here,electrocatalytic and photoelectrocatalytic treatments stand at the forefront of advanced plastic upcycling.Electrocatalytic or photoelectrocatalytic treatments involve chemical reactions that facilitate electron transfer through the electrode/electrolyte interface,driven by electrical or solar energy,respectively.These methods enable precise control of chemical reactions,harnessing potential,current density,or light to yield valuable chemical products.This review explores recent progress in plastic upcycling through electrocatalytic and photoelectrocatalytic pathways,offering promising solutions to the plastic waste crisis and advancing sustainability in the plastics industry.展开更多
The social transformation brought aboutby digital technology is deeply impacting various industries.Digital education products, with core technologiessuch as 5G, AI, IoT (Internet of Things),etc., are continuously pen...The social transformation brought aboutby digital technology is deeply impacting various industries.Digital education products, with core technologiessuch as 5G, AI, IoT (Internet of Things),etc., are continuously penetrating areas such as teaching,management, and evaluation. Apps, miniprograms,and emerging large-scale models are providingexcellent knowledge performance and flexiblecross-media output. However, they also exposerisks such as content discrimination and algorithmcommercialization. This paper conducts anevidence-based analysis of digital education productrisks from four dimensions: “digital resourcesinformationdissemination-algorithm design-cognitiveassessment”. It breaks through corresponding identificationtechnologies and, relying on the diverse characteristicsof governance systems, explores governancestrategies for digital education products from the threedomains of “regulators-developers-users”.展开更多
We establish the Stinespring dilation theorem of the link product of quantum channels in two different ways,discuss the discrimination of quantum channels,and show that the distinguishability can be improved by self-l...We establish the Stinespring dilation theorem of the link product of quantum channels in two different ways,discuss the discrimination of quantum channels,and show that the distinguishability can be improved by self-linking each quantum channel n times as n grows.We also find that the maximum value of Uhlmann's theorem can be achieved for diagonal channels.展开更多
For each real number x∈(0,1),let[a_(1)(x),a_(2)(x),…,a_n(x),…]denote its continued fraction expansion.We study the convergence exponent defined byτ(x)=inf{s≥0:∞∑n=1(a_(n)(x)a_(n+1)(x))^(-s)<∞},which reflect...For each real number x∈(0,1),let[a_(1)(x),a_(2)(x),…,a_n(x),…]denote its continued fraction expansion.We study the convergence exponent defined byτ(x)=inf{s≥0:∞∑n=1(a_(n)(x)a_(n+1)(x))^(-s)<∞},which reflects the growth rate of the product of two consecutive partial quotients.As a main result,the Hausdorff dimensions of the level sets ofτ(x)are determined.展开更多
The cold plasma(CP)technique was applied to alleviate the contamination of polycyclic aromatic hydrocarbon(PAH)in this investigation.Two different CP treatments methods were implemented in the production of beef patti...The cold plasma(CP)technique was applied to alleviate the contamination of polycyclic aromatic hydrocarbon(PAH)in this investigation.Two different CP treatments methods were implemented in the production of beef patties,to investigate their inhibition and degradation capacity on PAHs.With 5 different cooking oils and fats addition,the inhibition mechanism of in-package cold plasma(ICP)pretreatment was explored from the aspect of raw patties fatty acids composition variation.The results of principal component analysis showed that the first two principal components accounted for more than 80%of the total variation in the original data,indicating that the content of saturated fatty acids was significantly positively correlated with the formation of PAHs.ICP pretreatment inhibited the formation of PAHs by changing the composition of fatty acids,which showed that the total amount of polyunsaturated fatty acids decreased and the total amount of monounsaturated fatty acids increased.Sensory discrimination tests demonstrated there were discernable differences between 2 CP treated samples and the controls,utilization of the ICP pretreatment in meat products processing was expected to achieve satisfying eating quality.In conclusion,CP treatment degraded PAHs through stepwise ring-opening oxidation in 2 reported pathways,the toxicity of PAHs contaminated products was alleviated after CP treatment.展开更多
Non-enzymatic glycation reaction in food can produce diet-derived advanced glycation end products(dAGEs),which have potential health risks.Thus,it is of great significance to find efficient substances to improve the n...Non-enzymatic glycation reaction in food can produce diet-derived advanced glycation end products(dAGEs),which have potential health risks.Thus,it is of great significance to find efficient substances to improve the negative effects induced by dAGEs on human health.This study investigated the intervening effects of peanut skin procyanidins(PSP)on the dAGEs-induced oxidative stress and systemic inflammation in experimental mice model.Results showed that the accumulation of AGEs in serum,liver,and kidney was significantly increased after mice were fed dAGEs(P<0.05).The expression of advanced glycation product receptor(RAGE)was also significantly increased in liver and kidney(P<0.05).PSP could not only effectively reduce the accumulation of AGEs in serum,liver and kidney of mice,but also reduce the expression of RAGE in liver and kidney of mice.And the levels of pro-inflammatory cytokines interleukin-6(IL-6),tumor necrosis factor(TNF-α),and IL-1βin serum of mice were significantly decreased(P<0.05),while the levels of antiinflammatory factor IL-10 were increased,and the inflammatory injury in mice was improved.In addition,the levels of superoxide dismutase(SOD),glutathione(GSH),catalase(CAT)in liver and kidney of mice were increased(P<0.05),and the level of malondialdehyde(MDA)was decreased(P<0.05),which enhanced the antioxidant capacity of mice in vivo,and improved the oxidative damage of liver and kidney.Molecular docking technique was used to confirm that the parent compound of procyanidins and its main metabolites,such as 3-hydroxyphenylacetic acid,could interact with RAGE,which might inhibit the activation of nuclear transcription factor(NF-κB),and ultimately reduce oxidative stress and inflammation in mice.展开更多
To improve the electrocatalytic transformation of carbon dioxide (CO_(2)) to multi-carbon (C_(2+)) products is of great importance.Here we developed a nitrogen-doped Cu catalyst,by which the maximum C_(2+) Faradaic ef...To improve the electrocatalytic transformation of carbon dioxide (CO_(2)) to multi-carbon (C_(2+)) products is of great importance.Here we developed a nitrogen-doped Cu catalyst,by which the maximum C_(2+) Faradaic efficiency can reach 72.7%in flow-cell system,with the partial current density reaching 0.62 A cm^(-2).The in situ Raman spectra demonstrate that the *CO adsorption can be strengthened on such a N-doped Cu catalyst,thus promoting the *CO utilization in the subsequent C–C coupling step.Simultaneously,the water activation can be well enhanced by N doping on Cu catalyst.Owing to the synergistic effects,the selectivity and activity for C_(2+) products over the N-deoped Cu catalyst are much improved.展开更多
A ratiometric fluorescent probe for hypoxanthine(Hx)detection was established based on the mimic enzyme and fluorescence characteristics of cobalt-doped graphite-phase carbon nitride(Co doped g-C_(3)N_(4)).In addition...A ratiometric fluorescent probe for hypoxanthine(Hx)detection was established based on the mimic enzyme and fluorescence characteristics of cobalt-doped graphite-phase carbon nitride(Co doped g-C_(3)N_(4)).In addition to emitting strong fluorescence,the peroxidase activity of Co doped g-C_(3)N_(4)can catalyze the reaction of O-phenylenediamine and H_(2)O_(2)to produce diallyl phthalate which can emit yellow fluorescence at 570 nm.Through the decomposition of Hx by xanthine oxidase,Hx can be indirectly detected by the generating hydrogen peroxide based on the measurement of fluorescent ratio I(F_(570)/F_(370)).The linear range was 1.7-272.2 mg/kg(R^(2)=0.997),and the detection limit was 1.52 mg/kg(3σ/K,n=9).The established method was applied to Hx detection in bass,grass carp,and shrimp,and the data were verified by HPLC.The result shows that the established probe is sensitive,accurate,and reliable,and can be used for Hx detection in aquatic products.展开更多
Our previous study has revealed that procyanidin A_(1)(A_(1))and its simulated digestive product(D-A,)can alleviate acrylamide(ACR)-induced intestine cell damage.However,the underlying mechanism remains unknown.In thi...Our previous study has revealed that procyanidin A_(1)(A_(1))and its simulated digestive product(D-A,)can alleviate acrylamide(ACR)-induced intestine cell damage.However,the underlying mechanism remains unknown.In this study,we elucidated the molecular mechanism for and D-A_(1) to alleviate ACR-stimulated IPEC-J2 cell damage.ACR slightly activated nuclear factor erythroid 2-related factor 2(Nrf2)signaling and its target genes,but this activation could not reduce intestine cell damage.A_(1) and D-A_(1) could alleviate ACR-induced cell damage,but the effect was abrogated in cells transiently transfected with Nrf2 small interfering RNA(siRNA).Further investigation confirmed that A_(1) and D-A_(1) interacted with Ketch-like ECH-associated protein 1(Keapl),which boosted the stabilization of Nrf2,subsequently promoted the translocation of Nrf2 into the nucleus,and further increased the expression of antioxidant proteins,thereby inhibiting glutathione(GSH)consumption,maintaining redox balance and eventually alleviating ACR-induced cell damage.Importantly,there was no difference between A_(1) and D-A_(1) treated groups,indicating that A_(1) can tolerate gastrointestinal digestion and may be a potential compound to limit the toxicity of ACR.展开更多
Wastewater electrolysis cells(WECs)for decentralized wastewater treatment/reuse coupled with H_(2) production can reduce the carbon footprint associated with transportation of water,waste,and energy carrier.This study...Wastewater electrolysis cells(WECs)for decentralized wastewater treatment/reuse coupled with H_(2) production can reduce the carbon footprint associated with transportation of water,waste,and energy carrier.This study reports Ir-doped NiFe_(2)O_(4)(NFI,~5 at%Ir)spinel layer with TiO_(2) overlayer(NFI/TiO_(2)),as a scalable heterojunction anode for direct electrolysis of wastewater with circumneutral pH in a single-compartment cell.In dilute(0.1 M)NaCl solutions,the NFI/TiO_(2) marks superior activity and selectivity for chlorine evolution reaction,outperforming the benchmark IrO_(2).Robust operation in near-neutral pH was confirmed.Electroanalyses including operando X-ray absorption spectroscopy unveiled crucial roles of TiO_(2) which serves both as the primary site for Cl−chemisorption and a protective layer for NFI as an ohmic contact.Galvanostatic electrolysis of NH4+-laden synthetic wastewater demonstrated that NFI/TiO_(2)not only achieves quasi-stoichiometric NH_(4)^(+)-to-N_(2)conversion,but also enhances H_(2)generation efficiency with minimal competing reactions such as reduction of dissolved oxygen and reactive chlorine.The scaled-up WEC with NFI/TiO_(2)was demonstrated for electrolysis of toilet wastewater.展开更多
Ship outfitting is a key process in shipbuilding.Efficient and high-quality ship outfitting is a top priority for modern shipyards.These activities are conducted at different stations of shipyards.The outfitting plan ...Ship outfitting is a key process in shipbuilding.Efficient and high-quality ship outfitting is a top priority for modern shipyards.These activities are conducted at different stations of shipyards.The outfitting plan is one of the crucial issues in shipbuilding.In this paper,production scheduling and material ordering with endogenous uncertainty of the outfitting process are investigated.The uncertain factors in outfitting equipment production are usually decision-related,which leads to difficulties in addressing uncertainties in the outfitting production workshops before production is conducted according to plan.This uncertainty is regarded as endogenous uncertainty and can be treated as non-anticipativity constraints in the model.To address this problem,a stochastic two-stage programming model with endogenous uncertainty is established to optimize the outfitting job scheduling and raw material ordering process.A practical case of the shipyard of China Merchants Heavy Industry Co.,Ltd.is used to evaluate the performance of the proposed method.Satisfactory results are achieved at the lowest expected total cost as the complete kit rate of outfitting equipment is improved and emergency replenishment is reduced.展开更多
Hydrogen generation and related energy applications heavily rely on the hydrogen evolution reaction(HER),which faces challenges of slow kinetics and high overpotential.Efficient electrocatalysts,particularly single-at...Hydrogen generation and related energy applications heavily rely on the hydrogen evolution reaction(HER),which faces challenges of slow kinetics and high overpotential.Efficient electrocatalysts,particularly single-atom catalysts (SACs) on two-dimensional (2D) materials,are essential.This study presents a few-shot machine learning (ML) assisted high-throughput screening of 2D septuple-atomic-layer Ga_(2)CoS_(4-x)supported SACs to predict HER catalytic activity.Initially,density functional theory (DFT)calculations showed that 2D Ga_(2)CoS4is inactive for HER.However,defective Ga_(2)CoS_(4-x)(x=0–0.25)monolayers exhibit excellent HER activity due to surface sulfur vacancies (SVs),with predicted overpotentials (0–60 mV) comparable to or lower than commercial Pt/C,which typically exhibits an overpotential of around 50 m V in the acidic electrolyte,when the concentration of surface SV is lower than 8.3%.SVs generate spin-polarized states near the Fermi level,making them effective HER sites.We demonstrate ML-accelerated HER overpotential predictions for all transition metal SACs on 2D Ga_(2)CoS_(4-x).Using DFT data from 18 SACs,an ML model with high prediction accuracy and reduced computation time was developed.An intrinsic descriptor linking SAC atomic properties to HER overpotential was identified.This study thus provides a framework for screening SACs on 2D materials,enhancing catalyst design.展开更多
The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for...The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for hydrogen production.Despite remarkable advancements in this field,confronting the sluggish electrochemical kinetics and inherent high-energy consumption arising from deteriorated mass transport within PEMWE systems remains a formidable obstacle.This impediment stems primarily from the hindered protons mass transfer and the untimely hydrogen bubbles detachment.To address these challenges,we harness the inherent variability of electrical energy and introduce an innovative pulsed dynamic water electrolysis system.Compared to constant voltage electrolysis(hydrogen production rate:51.6 m L h^(-1),energy consumption:5.37 kWh Nm-^(3)H_(2)),this strategy(hydrogen production rate:66 m L h^(-1),energy consumption:3.83 kWh Nm-^(3)H_(2))increases the hydrogen production rate by approximately 27%and reduces the energy consumption by about 28%.Furthermore,we demonstrate the practicality of this system by integrating it with an off-grid photovoltaic(PV)system designed for outdoor operation,successfully driving a hydrogen production current of up to 500 mA under an average voltage of approximately 2 V.The combined results of in-situ characterization and finite element analysis reveal the performance enhancement mechanism:pulsed dynamic electrolysis(PDE)dramatically accelerates the enrichment of protons at the electrode/solution interface and facilitates the release of bubbles on the electrode surface.As such,PDE-enhanced PEMWE represents a synergistic advancement,concurrently enhancing both the hydrogen generation reaction and associated transport processes.This promising technology not only redefines the landscape of electrolysis-based hydrogen production but also holds immense potential for broadening its application across a diverse spectrum of electrocatalytic endeavors.展开更多
In this paper, extracting parallelizatio n from the sum of disjoint products approach is discussed. A general framework of parallelizing disjoint products approach is presented. And a parallel version of the newest...In this paper, extracting parallelizatio n from the sum of disjoint products approach is discussed. A general framework of parallelizing disjoint products approach is presented. And a parallel version of the newest disjoint products algorithm is implemented. The results of testing s how the effect is so good to get linear speedups.展开更多
This paper gives a sufficient and necessary condition for twisted products to be weak Hopf algebras, moreover, gives a description for smash products to be weak Hopf algebras. It respectively generalizes R.K.Molnar...This paper gives a sufficient and necessary condition for twisted products to be weak Hopf algebras, moreover, gives a description for smash products to be weak Hopf algebras. It respectively generalizes R.K.Molnar's major result and I.Boca's result.展开更多
We introduce a special tracial Rokhlin property for unital C~*-algebras. Let A be a unital tracial rank zero C~*-algebra(or tracial rank no more than one C~*-algebra). Suppose that α : G → Aut(A) is an actio...We introduce a special tracial Rokhlin property for unital C~*-algebras. Let A be a unital tracial rank zero C~*-algebra(or tracial rank no more than one C~*-algebra). Suppose that α : G → Aut(A) is an action of a finite group G on A, which has this special tracial Rokhlin property, and suppose that A is a α-simple C~*-algebra. Then, the crossed product C~*-algebra C~*(G, A, α) has tracia rank zero(or has tracial rank no more than one). In fact,we get a more general results.展开更多
基金funded by National Natural Science Foundation of China(51901160)。
文摘For the purpose of satisfying high demands for taste,color,flavor,and storage of meat products,water retention agents(WRAs)play an important role.Phosphate has been widely used as an attractive functional material for water retention in current practical applications.However,excessive phosphate addition and longterm consumption may be harmful impacts on health and the environment.Therefore,it is vital to develop safe and efficient phosphate-free WRAs for further improving water-holding capacity(WHC)efficacy and edible safety,especially in meat products.In particular,sugar water retention agents(SWRAs)are increasingly popular because of their perfect safety,excellent WHC,and superior biological properties.This review discusses the inducements and mechanisms underlying water loss in meat products.In addition,we focused on the research progresses and related mechanisms of SWRAs in the WHC of meat products and its unique biological functions,as well as the extraction technology.Finally,the future application and development of SWRA were prospected.
基金financially supported by National Key R&D Program(2021YFF0701905)。
文摘In order to save manpower and time costs,and to achieve simultaneous detection of multiple animal-derived components in meat and meat products,this study used multiple nucleotide polymorphism(MNP)marker technology based on the principle of high-throughput sequencing,and established a multi-locus 10 animalderived components identification method of cattle,goat,sheep,donkey,horse,chicken,duck,goose,pigeon,quail in meat and meat products.The specific loci of each species could be detected and the species could be accurately identified,including 5 loci for cattle and duck,3 loci for sheep,9 loci for chicken and horse,10 loci for goose and pigeon,6 loci for quail and 1 locus for donkey and goat,and an adulteration model was established to simulate commercially available samples.The results showed that the method established in this study had high throughput,good repeatability and accuracy,and was able to identify 10 animalderived components simultaneously with 100%repeatability accuracy.The detection limit was 0.1%(m/m)in simulated samples of chicken,duck and horse.Using the method established in this study to test commercially available samples,4 samples from 14 commercially available samples were detected to be inconsistent with the labels,of which 2 did not contain the target ingredient and 2 were adulterated with small amounts of other ingredients.
基金supported by grants from the National Natural Science Foundation of China(32030083)。
文摘Heat processing of food has been well validated as the trigger to generate heat-processing side product of advanced lipoxidation end products(ALEs),which potentially engenders the threat on systemic health or progression of diseases,especially the accumulated effect after long-term intake.Thus,the study was proposed to evaluate the effect of dietary ALEs on health after long-term ingestion,specifically through simulating the intake of dietary ALE in mice within 9 months to investigate the intervention effect and underlying mechanism.The unexpected observation of renal insufficiency or impairment after long-term intake of dietary ALEs indicated the negative impact on renal health,which has been verified by the pathological analysis.Further studies revealed that a high-ALEs diet disrupted the intestinal barrier,with enhanced impact after disturbing the gut microbiota to potentially lower the abundance of beneficial microbiome through producing nephrotoxic metabolites.Correlation analysis showed that the proliferation of harmful bacteria and the reduction of beneficial bacteria were strongly correlated with intestinal barrier damage and the development of renal insufficiency.Furthermore,the underlying mechanism was unveiled as that ALEs could inhibit AMPK/SIRT1 signaling to fundamentally induce renal inflammation and oxidative stress.Thus,it was revealed that long-term intake of dietary ALE could result in renal impairment,and the results emphasized the control or intervention on dietary ALE to decrease to accumulated impairment on systemic health.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(RS-2023-00302697,2022H1D3A3A01077254)。
文摘Plastic,renowned for its versatility,durability,and cost-effectiveness,is indispensable in modern society.Nevertheless,the annual production of nearly 400 million tons of plastic,coupled with a recycling rate of only 9%,has led to a monumental environmental crisis.Plastic recycling has emerged as a vital response to this crisis,offering sustainable solutions to mitigate its environmental impact.Among these recycling efforts,plastic upcycling has garnered attention,which elevates discarded plastics into higher-value products.Here,electrocatalytic and photoelectrocatalytic treatments stand at the forefront of advanced plastic upcycling.Electrocatalytic or photoelectrocatalytic treatments involve chemical reactions that facilitate electron transfer through the electrode/electrolyte interface,driven by electrical or solar energy,respectively.These methods enable precise control of chemical reactions,harnessing potential,current density,or light to yield valuable chemical products.This review explores recent progress in plastic upcycling through electrocatalytic and photoelectrocatalytic pathways,offering promising solutions to the plastic waste crisis and advancing sustainability in the plastics industry.
基金supported by the 2022 National Natural Science Foundation of China(No.62277002)the National Key Research and Development Program of China(2022YFC3303500).
文摘The social transformation brought aboutby digital technology is deeply impacting various industries.Digital education products, with core technologiessuch as 5G, AI, IoT (Internet of Things),etc., are continuously penetrating areas such as teaching,management, and evaluation. Apps, miniprograms,and emerging large-scale models are providingexcellent knowledge performance and flexiblecross-media output. However, they also exposerisks such as content discrimination and algorithmcommercialization. This paper conducts anevidence-based analysis of digital education productrisks from four dimensions: “digital resourcesinformationdissemination-algorithm design-cognitiveassessment”. It breaks through corresponding identificationtechnologies and, relying on the diverse characteristicsof governance systems, explores governancestrategies for digital education products from the threedomains of “regulators-developers-users”.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61877054,12031004,and 12271474).
文摘We establish the Stinespring dilation theorem of the link product of quantum channels in two different ways,discuss the discrimination of quantum channels,and show that the distinguishability can be improved by self-linking each quantum channel n times as n grows.We also find that the maximum value of Uhlmann's theorem can be achieved for diagonal channels.
基金supported by the Scientific Research Fund of Hunan Provincial Education Department(21B0070)the Natural Science Foundation of Jiangsu Province(BK20231452)+1 种基金the Fundamental Research Funds for the Central Universities(30922010809)the National Natural Science Foundation of China(11801591,11971195,12071171,12171107,12201207,12371072)。
文摘For each real number x∈(0,1),let[a_(1)(x),a_(2)(x),…,a_n(x),…]denote its continued fraction expansion.We study the convergence exponent defined byτ(x)=inf{s≥0:∞∑n=1(a_(n)(x)a_(n+1)(x))^(-s)<∞},which reflects the growth rate of the product of two consecutive partial quotients.As a main result,the Hausdorff dimensions of the level sets ofτ(x)are determined.
基金supported by the Key Scientific and Technological Research Projects of Xinjiang Production and Construction Corps (2022AB001)the Henan Key Laboratory of Cold Chain Food Quality and Safety Control (CCFQ2022)+2 种基金the National Key R&D Program of China (2019YFC1606200),funded by Ministry of Science and Technology of the People’s Republic of Chinathe China Agriculture Research System (CARS-41), which was funded by the Chinese Ministry of Agriculturethe Priority Academic Program Development of Jiangsu Higher Education Institution (PAPD)
文摘The cold plasma(CP)technique was applied to alleviate the contamination of polycyclic aromatic hydrocarbon(PAH)in this investigation.Two different CP treatments methods were implemented in the production of beef patties,to investigate their inhibition and degradation capacity on PAHs.With 5 different cooking oils and fats addition,the inhibition mechanism of in-package cold plasma(ICP)pretreatment was explored from the aspect of raw patties fatty acids composition variation.The results of principal component analysis showed that the first two principal components accounted for more than 80%of the total variation in the original data,indicating that the content of saturated fatty acids was significantly positively correlated with the formation of PAHs.ICP pretreatment inhibited the formation of PAHs by changing the composition of fatty acids,which showed that the total amount of polyunsaturated fatty acids decreased and the total amount of monounsaturated fatty acids increased.Sensory discrimination tests demonstrated there were discernable differences between 2 CP treated samples and the controls,utilization of the ICP pretreatment in meat products processing was expected to achieve satisfying eating quality.In conclusion,CP treatment degraded PAHs through stepwise ring-opening oxidation in 2 reported pathways,the toxicity of PAHs contaminated products was alleviated after CP treatment.
基金supported by the Doctoral Science Foundation of Shanxi Agricultural University(2023BQ34)Shanxi Province Work Award Fund Research Project(SXBYKY2022116).
文摘Non-enzymatic glycation reaction in food can produce diet-derived advanced glycation end products(dAGEs),which have potential health risks.Thus,it is of great significance to find efficient substances to improve the negative effects induced by dAGEs on human health.This study investigated the intervening effects of peanut skin procyanidins(PSP)on the dAGEs-induced oxidative stress and systemic inflammation in experimental mice model.Results showed that the accumulation of AGEs in serum,liver,and kidney was significantly increased after mice were fed dAGEs(P<0.05).The expression of advanced glycation product receptor(RAGE)was also significantly increased in liver and kidney(P<0.05).PSP could not only effectively reduce the accumulation of AGEs in serum,liver and kidney of mice,but also reduce the expression of RAGE in liver and kidney of mice.And the levels of pro-inflammatory cytokines interleukin-6(IL-6),tumor necrosis factor(TNF-α),and IL-1βin serum of mice were significantly decreased(P<0.05),while the levels of antiinflammatory factor IL-10 were increased,and the inflammatory injury in mice was improved.In addition,the levels of superoxide dismutase(SOD),glutathione(GSH),catalase(CAT)in liver and kidney of mice were increased(P<0.05),and the level of malondialdehyde(MDA)was decreased(P<0.05),which enhanced the antioxidant capacity of mice in vivo,and improved the oxidative damage of liver and kidney.Molecular docking technique was used to confirm that the parent compound of procyanidins and its main metabolites,such as 3-hydroxyphenylacetic acid,could interact with RAGE,which might inhibit the activation of nuclear transcription factor(NF-κB),and ultimately reduce oxidative stress and inflammation in mice.
基金supported by National Natural Science Foundation of China (22033009, 22121002, 22238011)。
文摘To improve the electrocatalytic transformation of carbon dioxide (CO_(2)) to multi-carbon (C_(2+)) products is of great importance.Here we developed a nitrogen-doped Cu catalyst,by which the maximum C_(2+) Faradaic efficiency can reach 72.7%in flow-cell system,with the partial current density reaching 0.62 A cm^(-2).The in situ Raman spectra demonstrate that the *CO adsorption can be strengthened on such a N-doped Cu catalyst,thus promoting the *CO utilization in the subsequent C–C coupling step.Simultaneously,the water activation can be well enhanced by N doping on Cu catalyst.Owing to the synergistic effects,the selectivity and activity for C_(2+) products over the N-deoped Cu catalyst are much improved.
基金supported by the National Natural Science Foundation of China(21804050)the National Key R and D Program of China(2018YFD0901003)+2 种基金the Science and Technology Planning Project of Xiamen,China(3502Z20183031)the Fujian Provincial Fund Project(2018J01432)the Xiamen Science and Technology Planning Project,China(3502Z20183031)。
文摘A ratiometric fluorescent probe for hypoxanthine(Hx)detection was established based on the mimic enzyme and fluorescence characteristics of cobalt-doped graphite-phase carbon nitride(Co doped g-C_(3)N_(4)).In addition to emitting strong fluorescence,the peroxidase activity of Co doped g-C_(3)N_(4)can catalyze the reaction of O-phenylenediamine and H_(2)O_(2)to produce diallyl phthalate which can emit yellow fluorescence at 570 nm.Through the decomposition of Hx by xanthine oxidase,Hx can be indirectly detected by the generating hydrogen peroxide based on the measurement of fluorescent ratio I(F_(570)/F_(370)).The linear range was 1.7-272.2 mg/kg(R^(2)=0.997),and the detection limit was 1.52 mg/kg(3σ/K,n=9).The established method was applied to Hx detection in bass,grass carp,and shrimp,and the data were verified by HPLC.The result shows that the established probe is sensitive,accurate,and reliable,and can be used for Hx detection in aquatic products.
基金supported by the project from National Natural Science Foundation of China (31671962)Fundamental Research Funds for the Central Universities (2662019PY034)。
文摘Our previous study has revealed that procyanidin A_(1)(A_(1))and its simulated digestive product(D-A,)can alleviate acrylamide(ACR)-induced intestine cell damage.However,the underlying mechanism remains unknown.In this study,we elucidated the molecular mechanism for and D-A_(1) to alleviate ACR-stimulated IPEC-J2 cell damage.ACR slightly activated nuclear factor erythroid 2-related factor 2(Nrf2)signaling and its target genes,but this activation could not reduce intestine cell damage.A_(1) and D-A_(1) could alleviate ACR-induced cell damage,but the effect was abrogated in cells transiently transfected with Nrf2 small interfering RNA(siRNA).Further investigation confirmed that A_(1) and D-A_(1) interacted with Ketch-like ECH-associated protein 1(Keapl),which boosted the stabilization of Nrf2,subsequently promoted the translocation of Nrf2 into the nucleus,and further increased the expression of antioxidant proteins,thereby inhibiting glutathione(GSH)consumption,maintaining redox balance and eventually alleviating ACR-induced cell damage.Importantly,there was no difference between A_(1) and D-A_(1) treated groups,indicating that A_(1) can tolerate gastrointestinal digestion and may be a potential compound to limit the toxicity of ACR.
基金supported by the National Research Foundation of Korea(NRF)grants(2022R1A2C4001228,2022M3H4A4097524,2022M3I3A1082499,and 2021M3I3A1084818)the Technology Innovation Program(20026415)of the Ministry of Trade,Industry&Energy(MOTIE,Korea)the supports from Nanopac for fabrication of scaled-up reactor.
文摘Wastewater electrolysis cells(WECs)for decentralized wastewater treatment/reuse coupled with H_(2) production can reduce the carbon footprint associated with transportation of water,waste,and energy carrier.This study reports Ir-doped NiFe_(2)O_(4)(NFI,~5 at%Ir)spinel layer with TiO_(2) overlayer(NFI/TiO_(2)),as a scalable heterojunction anode for direct electrolysis of wastewater with circumneutral pH in a single-compartment cell.In dilute(0.1 M)NaCl solutions,the NFI/TiO_(2) marks superior activity and selectivity for chlorine evolution reaction,outperforming the benchmark IrO_(2).Robust operation in near-neutral pH was confirmed.Electroanalyses including operando X-ray absorption spectroscopy unveiled crucial roles of TiO_(2) which serves both as the primary site for Cl−chemisorption and a protective layer for NFI as an ohmic contact.Galvanostatic electrolysis of NH4+-laden synthetic wastewater demonstrated that NFI/TiO_(2)not only achieves quasi-stoichiometric NH_(4)^(+)-to-N_(2)conversion,but also enhances H_(2)generation efficiency with minimal competing reactions such as reduction of dissolved oxygen and reactive chlorine.The scaled-up WEC with NFI/TiO_(2)was demonstrated for electrolysis of toilet wastewater.
基金supported in part by the High-tech ship scientific research project of the Ministry of Industry and Information Technology of the People’s Republic of China,and the National Nature Science Foundation of China(Grant No.71671113)the Science and Technology Department of Shaanxi Province(No.2020GY-219)the Ministry of Education Collaborative Project of Production,Learning and Research(No.201901024016).
文摘Ship outfitting is a key process in shipbuilding.Efficient and high-quality ship outfitting is a top priority for modern shipyards.These activities are conducted at different stations of shipyards.The outfitting plan is one of the crucial issues in shipbuilding.In this paper,production scheduling and material ordering with endogenous uncertainty of the outfitting process are investigated.The uncertain factors in outfitting equipment production are usually decision-related,which leads to difficulties in addressing uncertainties in the outfitting production workshops before production is conducted according to plan.This uncertainty is regarded as endogenous uncertainty and can be treated as non-anticipativity constraints in the model.To address this problem,a stochastic two-stage programming model with endogenous uncertainty is established to optimize the outfitting job scheduling and raw material ordering process.A practical case of the shipyard of China Merchants Heavy Industry Co.,Ltd.is used to evaluate the performance of the proposed method.Satisfactory results are achieved at the lowest expected total cost as the complete kit rate of outfitting equipment is improved and emergency replenishment is reduced.
文摘Hydrogen generation and related energy applications heavily rely on the hydrogen evolution reaction(HER),which faces challenges of slow kinetics and high overpotential.Efficient electrocatalysts,particularly single-atom catalysts (SACs) on two-dimensional (2D) materials,are essential.This study presents a few-shot machine learning (ML) assisted high-throughput screening of 2D septuple-atomic-layer Ga_(2)CoS_(4-x)supported SACs to predict HER catalytic activity.Initially,density functional theory (DFT)calculations showed that 2D Ga_(2)CoS4is inactive for HER.However,defective Ga_(2)CoS_(4-x)(x=0–0.25)monolayers exhibit excellent HER activity due to surface sulfur vacancies (SVs),with predicted overpotentials (0–60 mV) comparable to or lower than commercial Pt/C,which typically exhibits an overpotential of around 50 m V in the acidic electrolyte,when the concentration of surface SV is lower than 8.3%.SVs generate spin-polarized states near the Fermi level,making them effective HER sites.We demonstrate ML-accelerated HER overpotential predictions for all transition metal SACs on 2D Ga_(2)CoS_(4-x).Using DFT data from 18 SACs,an ML model with high prediction accuracy and reduced computation time was developed.An intrinsic descriptor linking SAC atomic properties to HER overpotential was identified.This study thus provides a framework for screening SACs on 2D materials,enhancing catalyst design.
基金National Natural Science Foundation of China(No.52476192,No.52106237)Natural Science Foundation of Heilongjiang Province(No.YQ2022E027)。
文摘The transition of hydrogen sourcing from carbon-intensive to water-based methodologies is underway,with renewable energy-powered proton exchange membrane water electrolysis(PEMWE)emerging as the preeminent pathway for hydrogen production.Despite remarkable advancements in this field,confronting the sluggish electrochemical kinetics and inherent high-energy consumption arising from deteriorated mass transport within PEMWE systems remains a formidable obstacle.This impediment stems primarily from the hindered protons mass transfer and the untimely hydrogen bubbles detachment.To address these challenges,we harness the inherent variability of electrical energy and introduce an innovative pulsed dynamic water electrolysis system.Compared to constant voltage electrolysis(hydrogen production rate:51.6 m L h^(-1),energy consumption:5.37 kWh Nm-^(3)H_(2)),this strategy(hydrogen production rate:66 m L h^(-1),energy consumption:3.83 kWh Nm-^(3)H_(2))increases the hydrogen production rate by approximately 27%and reduces the energy consumption by about 28%.Furthermore,we demonstrate the practicality of this system by integrating it with an off-grid photovoltaic(PV)system designed for outdoor operation,successfully driving a hydrogen production current of up to 500 mA under an average voltage of approximately 2 V.The combined results of in-situ characterization and finite element analysis reveal the performance enhancement mechanism:pulsed dynamic electrolysis(PDE)dramatically accelerates the enrichment of protons at the electrode/solution interface and facilitates the release of bubbles on the electrode surface.As such,PDE-enhanced PEMWE represents a synergistic advancement,concurrently enhancing both the hydrogen generation reaction and associated transport processes.This promising technology not only redefines the landscape of electrolysis-based hydrogen production but also holds immense potential for broadening its application across a diverse spectrum of electrocatalytic endeavors.
文摘In this paper, extracting parallelizatio n from the sum of disjoint products approach is discussed. A general framework of parallelizing disjoint products approach is presented. And a parallel version of the newest disjoint products algorithm is implemented. The results of testing s how the effect is so good to get linear speedups.
基金This work is supported by National Natural Science Foundation of Chinaby the excellent doctorate fund of Nanjing agricultural university
文摘This paper gives a sufficient and necessary condition for twisted products to be weak Hopf algebras, moreover, gives a description for smash products to be weak Hopf algebras. It respectively generalizes R.K.Molnar's major result and I.Boca's result.
文摘We introduce a special tracial Rokhlin property for unital C~*-algebras. Let A be a unital tracial rank zero C~*-algebra(or tracial rank no more than one C~*-algebra). Suppose that α : G → Aut(A) is an action of a finite group G on A, which has this special tracial Rokhlin property, and suppose that A is a α-simple C~*-algebra. Then, the crossed product C~*-algebra C~*(G, A, α) has tracia rank zero(or has tracial rank no more than one). In fact,we get a more general results.