Urban air pollution has brought great troubles to physical and mental health,economic development,environmental protection,and other aspects.Predicting the changes and trends of air pollution can provide a scientific ...Urban air pollution has brought great troubles to physical and mental health,economic development,environmental protection,and other aspects.Predicting the changes and trends of air pollution can provide a scientific basis for governance and prevention efforts.In this paper,we propose an interval prediction method that considers the spatio-temporal characteristic information of PM_(2.5)signals from multiple stations.K-nearest neighbor(KNN)algorithm interpolates the lost signals in the process of collection,transmission,and storage to ensure the continuity of data.Graph generative network(GGN)is used to process time-series meteorological data with complex structures.The graph U-Nets framework is introduced into the GGN model to enhance its controllability to the graph generation process,which is beneficial to improve the efficiency and robustness of the model.In addition,sparse Bayesian regression is incorporated to improve the dimensional disaster defect of traditional kernel density estimation(KDE)interval prediction.With the support of sparse strategy,sparse Bayesian regression kernel density estimation(SBR-KDE)is very efficient in processing high-dimensional large-scale data.The PM_(2.5)data of spring,summer,autumn,and winter from 34 air quality monitoring sites in Beijing verified the accuracy,generalization,and superiority of the proposed model in interval prediction.展开更多
Tracking and analyzing data from research projects is critical for understanding research trends and supporting the development of science and technology strategies.However,the data from these projects is often comple...Tracking and analyzing data from research projects is critical for understanding research trends and supporting the development of science and technology strategies.However,the data from these projects is often complex and inadequate,making it challenging for researchers to conduct in-depth data mining to improve policies or management.To address this problem,this paper adopts a top-down approach to construct a knowledge graph(KG)for research projects.Firstly,we construct an integrated ontology by referring to the metamodel of various architectures,which is called the meta-model integration conceptual reference model.Subsequently,we use the dependency parsing method to extract knowledge from unstructured textual data and use the entity alignment method based on weakly supervised learning to classify the extracted entities,completing the construction of the KG for the research projects.In addition,a knowledge inference model based on representation learning is employed to achieve knowledge completion and improve the KG.Finally,experiments are conducted on the KG for research projects and the results demonstrate the effectiveness of the proposed method in enriching incomplete data within the KG.展开更多
For target tracking and localization in bearing-only sensor network,it is an essential and significant challenge to solve the problem of plug-and-play expansion while stably enhancing the accuracy of state estimation....For target tracking and localization in bearing-only sensor network,it is an essential and significant challenge to solve the problem of plug-and-play expansion while stably enhancing the accuracy of state estimation.This paper pro-poses a distributed state estimation method based on two-layer factor graph.Firstly,the measurement model of the bearing-only sensor network is constructed,and by investigating the observ-ability and the Cramer-Rao lower bound of the system model,the preconditions are analyzed.Subsequently,the location fac-tor graph and cubature information filtering algorithm of sensor node pairs are proposed for localized estimation.Building upon this foundation,the mechanism for propagating confidence mes-sages within the fusion factor graph is designed,and is extended to the entire sensor network to achieve global state estimation.Finally,groups of simulation experiments are con-ducted to compare and analyze the results,which verifies the rationality,effectiveness,and superiority of the proposed method.展开更多
We establish the Hausdorff dimension of the graph of general Markov processes on Rd based on some probability estimates of the processes staying or leaving small balls in small time.In particular,our results indicate ...We establish the Hausdorff dimension of the graph of general Markov processes on Rd based on some probability estimates of the processes staying or leaving small balls in small time.In particular,our results indicate that,for symmetric diffusion processes(withα=2)or symmetricα-stable-like processes(withα∈(0,2))on Rd,it holds almost surely that dimH GrX([0,1])=1{α<1}+(2−1/α)1{α≥1,d=1}+(d∧α)1{α≥1,d≥2}.We also systematically prove the corresponding results about the Hausdorff dimension of the range of the processes.展开更多
In the context of big data, many large-scale knowledge graphs have emerged to effectively organize the explosive growth of web data on the Internet. To select suitable knowledge graphs for use from many knowledge grap...In the context of big data, many large-scale knowledge graphs have emerged to effectively organize the explosive growth of web data on the Internet. To select suitable knowledge graphs for use from many knowledge graphs, quality assessment is particularly important. As an important thing of quality assessment, completeness assessment generally refers to the ratio of the current data volume to the total data volume.When evaluating the completeness of a knowledge graph, it is often necessary to refine the completeness dimension by setting different completeness metrics to produce more complete and understandable evaluation results for the knowledge graph.However, lack of awareness of requirements is the most problematic quality issue. In the actual evaluation process, the existing completeness metrics need to consider the actual application. Therefore, to accurately recommend suitable knowledge graphs to many users, it is particularly important to develop relevant measurement metrics and formulate measurement schemes for completeness. In this paper, we will first clarify the concept of completeness, establish each metric of completeness, and finally design a measurement proposal for the completeness of knowledge graphs.展开更多
基金Project(2020YFC2008605)supported by the National Key Research and Development Project of ChinaProject(52072412)supported by the National Natural Science Foundation of ChinaProject(2021JJ30359)supported by the Natural Science Foundation of Hunan Province,China。
文摘Urban air pollution has brought great troubles to physical and mental health,economic development,environmental protection,and other aspects.Predicting the changes and trends of air pollution can provide a scientific basis for governance and prevention efforts.In this paper,we propose an interval prediction method that considers the spatio-temporal characteristic information of PM_(2.5)signals from multiple stations.K-nearest neighbor(KNN)algorithm interpolates the lost signals in the process of collection,transmission,and storage to ensure the continuity of data.Graph generative network(GGN)is used to process time-series meteorological data with complex structures.The graph U-Nets framework is introduced into the GGN model to enhance its controllability to the graph generation process,which is beneficial to improve the efficiency and robustness of the model.In addition,sparse Bayesian regression is incorporated to improve the dimensional disaster defect of traditional kernel density estimation(KDE)interval prediction.With the support of sparse strategy,sparse Bayesian regression kernel density estimation(SBR-KDE)is very efficient in processing high-dimensional large-scale data.The PM_(2.5)data of spring,summer,autumn,and winter from 34 air quality monitoring sites in Beijing verified the accuracy,generalization,and superiority of the proposed model in interval prediction.
基金supported by the National Natural Science Foundation of China(72101263).
文摘Tracking and analyzing data from research projects is critical for understanding research trends and supporting the development of science and technology strategies.However,the data from these projects is often complex and inadequate,making it challenging for researchers to conduct in-depth data mining to improve policies or management.To address this problem,this paper adopts a top-down approach to construct a knowledge graph(KG)for research projects.Firstly,we construct an integrated ontology by referring to the metamodel of various architectures,which is called the meta-model integration conceptual reference model.Subsequently,we use the dependency parsing method to extract knowledge from unstructured textual data and use the entity alignment method based on weakly supervised learning to classify the extracted entities,completing the construction of the KG for the research projects.In addition,a knowledge inference model based on representation learning is employed to achieve knowledge completion and improve the KG.Finally,experiments are conducted on the KG for research projects and the results demonstrate the effectiveness of the proposed method in enriching incomplete data within the KG.
基金supported by the National Natural Science Foundation of China(62176214).
文摘For target tracking and localization in bearing-only sensor network,it is an essential and significant challenge to solve the problem of plug-and-play expansion while stably enhancing the accuracy of state estimation.This paper pro-poses a distributed state estimation method based on two-layer factor graph.Firstly,the measurement model of the bearing-only sensor network is constructed,and by investigating the observ-ability and the Cramer-Rao lower bound of the system model,the preconditions are analyzed.Subsequently,the location fac-tor graph and cubature information filtering algorithm of sensor node pairs are proposed for localized estimation.Building upon this foundation,the mechanism for propagating confidence mes-sages within the fusion factor graph is designed,and is extended to the entire sensor network to achieve global state estimation.Finally,groups of simulation experiments are con-ducted to compare and analyze the results,which verifies the rationality,effectiveness,and superiority of the proposed method.
基金supported by Leshan Normal University Scientific Research Start-up Project for Introducing High-level Talents(Grand No.RC2024001).
文摘We establish the Hausdorff dimension of the graph of general Markov processes on Rd based on some probability estimates of the processes staying or leaving small balls in small time.In particular,our results indicate that,for symmetric diffusion processes(withα=2)or symmetricα-stable-like processes(withα∈(0,2))on Rd,it holds almost surely that dimH GrX([0,1])=1{α<1}+(2−1/α)1{α≥1,d=1}+(d∧α)1{α≥1,d≥2}.We also systematically prove the corresponding results about the Hausdorff dimension of the range of the processes.
基金supported by the National Key Laboratory for Comp lex Systems Simulation Foundation (6142006190301)。
文摘In the context of big data, many large-scale knowledge graphs have emerged to effectively organize the explosive growth of web data on the Internet. To select suitable knowledge graphs for use from many knowledge graphs, quality assessment is particularly important. As an important thing of quality assessment, completeness assessment generally refers to the ratio of the current data volume to the total data volume.When evaluating the completeness of a knowledge graph, it is often necessary to refine the completeness dimension by setting different completeness metrics to produce more complete and understandable evaluation results for the knowledge graph.However, lack of awareness of requirements is the most problematic quality issue. In the actual evaluation process, the existing completeness metrics need to consider the actual application. Therefore, to accurately recommend suitable knowledge graphs to many users, it is particularly important to develop relevant measurement metrics and formulate measurement schemes for completeness. In this paper, we will first clarify the concept of completeness, establish each metric of completeness, and finally design a measurement proposal for the completeness of knowledge graphs.