How to control the dynamic behavior of large-scale artificial active matter is a critical concern in experimental research on soft matter, particularly regarding the emergence of collective behaviors and the formation...How to control the dynamic behavior of large-scale artificial active matter is a critical concern in experimental research on soft matter, particularly regarding the emergence of collective behaviors and the formation of group patterns. Centralized systems excel in precise control over individual behavior within a group, ensuring high accuracy and controllability in task execution. Nevertheless, their sensitivity to group size may limit their adaptability to diverse tasks. In contrast, decentralized systems empower individuals with autonomous decision-making, enhancing adaptability and system robustness. Yet, this flexibility comes at the cost of reduced accuracy and efficiency in task execution. In this work, we present a unique method for regulating the centralized dynamic behavior of self-organizing clusters based on environmental interactions. Within this environment-coupled robot system, each robot possesses similar dynamic characteristics, and their internal programs are entirely identical. However, their behaviors can be guided by the centralized control of the environment, facilitating the accomplishment of diverse cluster tasks. This approach aims to balance the accuracy and flexibility of centralized control with the robustness and task adaptability of decentralized control. The proactive regulation of dynamic behavioral characteristics in active matter groups, demonstrated in this work through environmental interactions, holds the potential to introduce a novel technological approach and provide experimental references for studying the dynamic behavior control of large-scale artificial active matter systems.展开更多
Self-powered flexible devices with skin-like multiple sensing ability have attracted great attentions due to their broad applications in the Internet of Things(IoT).Various methods have been proposed to enhance mechan...Self-powered flexible devices with skin-like multiple sensing ability have attracted great attentions due to their broad applications in the Internet of Things(IoT).Various methods have been proposed to enhance mechano-optic or electric performance of the flexible devices;however,it remains challenging to realize the display and accurate recognition of motion trajectories for intelligent control.Here,we present a fully self-powered mechanoluminescent-triboelectric bimodal sensor based on micronanostructured mechanoluminescent elastomer,which can patterned-display the force trajectories.The deformable liquid metals used as stretchable electrode make the stress transfer stable through overall device to achieve outstanding mechanoluminescence(with a gray value of 107 under a stimulus force as low as 0.3 N and more than 2000 cycles reproducibility).Moreover,a microstructured surface is constructed which endows the resulted composite with significantly improved triboelectric performances(voltage increases from 8 to 24 V).Based on the excellent bimodal sensing performances and durability of the obtained composite,a highly reliable intelligent control system by machine learning has been developed for controlling trolley,providing an approach for advanced visual interaction devices and smart wearable electronics in the future IoT era.展开更多
Sandi Arabia is renown for its rich oil and gas Mesozoic. However, the discovery of Paleozoic fields in resources with the bulk of the reserves reservo/red in the the late 1980s has encouraged further exploration in t...Sandi Arabia is renown for its rich oil and gas Mesozoic. However, the discovery of Paleozoic fields in resources with the bulk of the reserves reservo/red in the the late 1980s has encouraged further exploration in the Paleozoic. This paper reviews the salient features of the Paleozoic petroleum geology in central Saudi Arabia and discusses the main factors controlling hydrocarbon accumulation in the Paleozoic. The Lower Silurian Qusaiba hot shale is the principal source rock for the hydrocarbons discovered in the Ordovician to Permian reservoirs. Of them, the Permo- Carboniferous Unayzah and Upper Ordovician Sarah Formations have the best exploration potential. The key factors controlling hydrocarbon accumulation in the Unayzah Formation are migration pathways and reservoir petrophysics. The key factors controlling hydrocarbon accumulation in the Sarah Formation are reservoir petrophysics and the development of structural traps.展开更多
Taking the tight oil of the Zhongnan sag in the Ordos Basin,Jimusar sag in the Junggar Basin and Qingxi sag in the Jiuquan Basin as study objects,based on field survey,dissection of tight oil reservoirs,sample test,mo...Taking the tight oil of the Zhongnan sag in the Ordos Basin,Jimusar sag in the Junggar Basin and Qingxi sag in the Jiuquan Basin as study objects,based on field survey,dissection of tight oil reservoirs,sample test,modeling experiment and comprehensive analysis,this study reveals that the tight oil accumulates at start-up pressure,advances under differential pressure,diffuses at alternating fast and low speeds,charges in stepped large area and migrates rapidly through fractures,and enriches in dominant fractures and pores.The root cause of ladder-like charge is the multiple scales of pores.The widespread source rock with high hydrocarbon generation intensity is the material basis for tight oil enrichment;the dominant source reservoir assemblage is the basic unit for tight oil enrichment;fractures and beddings are conducive to local rapid migration of tight oil;fractures and pores work together to control the enrichment of tight oil.Two typical accumulation models of tight oil are established,namely"source reservoir in coexistence,four optimal factors controlling enrichment around central area,and large-scale continuous distribution"for a large freshwater lake clastic rock basin and"source reservoir integration,four optimal factors controlling enrichment,central area distribution,small in size but high in enrichment degree"for a small saline lake diamictite depression.展开更多
A structure of central air conditioning system in building and its running pattern are proposed in order to perform optimum energy saving strategy. The design of room temperature controller is taken as an example to d...A structure of central air conditioning system in building and its running pattern are proposed in order to perform optimum energy saving strategy. The design of room temperature controller is taken as an example to discuss the design of fuzzy controller using common microprogrammed control unit (MCU) in detail. Based on fuzzy theory the query control tables fixed in read only memory (ROM) of MCU are established to realize the energy saving in the room temperature controller and the reasoning procedure is analyzed. The diagram of hardware design and the flow chart of software of room temperature controller are presented. The results show that the proposed method is practical and effective to achieve the energy saving goal.展开更多
The influence of a node in a network can be characterized by its macroscopic properties such as eigenvector centrality. An issue of significant theoretical and practical interest is to modify the influence or roles of...The influence of a node in a network can be characterized by its macroscopic properties such as eigenvector centrality. An issue of significant theoretical and practical interest is to modify the influence or roles of the nodes in a network, and recent advances indicate that this can be achieved by just controlling a subset of nodes: the socalled controllers. However, the relationship between the structural properties of a network and its controllability, e.g., the control of node importance, is still not well understood. Here we systematically" explore this relationship by constructing scale-free networks with a fixed degree sequence and tunable network characteristics. We calculate the relative size (nc*) of the minimai controlling set required to controi the importance of each individual node in a network. It is found that while clustering has no significant impact on nc*, changes in degree-degree correlations, heterogeneity and the average degree of networks demonstrate a discernible impact on its controllability.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No. 12174041)China Postdoctoral Science Foundation (CPSF)(Grant No. 2022M723118)the seed grants from the Wenzhou Institute,University of Chinese Academy of Sciences (Grant No. WIUCASQD2021002)。
文摘How to control the dynamic behavior of large-scale artificial active matter is a critical concern in experimental research on soft matter, particularly regarding the emergence of collective behaviors and the formation of group patterns. Centralized systems excel in precise control over individual behavior within a group, ensuring high accuracy and controllability in task execution. Nevertheless, their sensitivity to group size may limit their adaptability to diverse tasks. In contrast, decentralized systems empower individuals with autonomous decision-making, enhancing adaptability and system robustness. Yet, this flexibility comes at the cost of reduced accuracy and efficiency in task execution. In this work, we present a unique method for regulating the centralized dynamic behavior of self-organizing clusters based on environmental interactions. Within this environment-coupled robot system, each robot possesses similar dynamic characteristics, and their internal programs are entirely identical. However, their behaviors can be guided by the centralized control of the environment, facilitating the accomplishment of diverse cluster tasks. This approach aims to balance the accuracy and flexibility of centralized control with the robustness and task adaptability of decentralized control. The proactive regulation of dynamic behavioral characteristics in active matter groups, demonstrated in this work through environmental interactions, holds the potential to introduce a novel technological approach and provide experimental references for studying the dynamic behavior control of large-scale artificial active matter systems.
基金the National Natural Science Foundation of China(52173112 and 51873123)Sichuan Provincial Natural Science Fund for Distinguished Young Scholars(2021JDJQ0017)the Program for Featured Directions of Engineering Multidisciplines of Sichuan University(No:2020SCUNG203)for financial support。
文摘Self-powered flexible devices with skin-like multiple sensing ability have attracted great attentions due to their broad applications in the Internet of Things(IoT).Various methods have been proposed to enhance mechano-optic or electric performance of the flexible devices;however,it remains challenging to realize the display and accurate recognition of motion trajectories for intelligent control.Here,we present a fully self-powered mechanoluminescent-triboelectric bimodal sensor based on micronanostructured mechanoluminescent elastomer,which can patterned-display the force trajectories.The deformable liquid metals used as stretchable electrode make the stress transfer stable through overall device to achieve outstanding mechanoluminescence(with a gray value of 107 under a stimulus force as low as 0.3 N and more than 2000 cycles reproducibility).Moreover,a microstructured surface is constructed which endows the resulted composite with significantly improved triboelectric performances(voltage increases from 8 to 24 V).Based on the excellent bimodal sensing performances and durability of the obtained composite,a highly reliable intelligent control system by machine learning has been developed for controlling trolley,providing an approach for advanced visual interaction devices and smart wearable electronics in the future IoT era.
文摘Sandi Arabia is renown for its rich oil and gas Mesozoic. However, the discovery of Paleozoic fields in resources with the bulk of the reserves reservo/red in the the late 1980s has encouraged further exploration in the Paleozoic. This paper reviews the salient features of the Paleozoic petroleum geology in central Saudi Arabia and discusses the main factors controlling hydrocarbon accumulation in the Paleozoic. The Lower Silurian Qusaiba hot shale is the principal source rock for the hydrocarbons discovered in the Ordovician to Permian reservoirs. Of them, the Permo- Carboniferous Unayzah and Upper Ordovician Sarah Formations have the best exploration potential. The key factors controlling hydrocarbon accumulation in the Unayzah Formation are migration pathways and reservoir petrophysics. The key factors controlling hydrocarbon accumulation in the Sarah Formation are reservoir petrophysics and the development of structural traps.
基金Supported by the National Natural Science Foundation of China(41672118)Strategic Cooperation Science and Technology Project Between China University of Petroleum and Petro China(ZLZX2020-01-06)。
文摘Taking the tight oil of the Zhongnan sag in the Ordos Basin,Jimusar sag in the Junggar Basin and Qingxi sag in the Jiuquan Basin as study objects,based on field survey,dissection of tight oil reservoirs,sample test,modeling experiment and comprehensive analysis,this study reveals that the tight oil accumulates at start-up pressure,advances under differential pressure,diffuses at alternating fast and low speeds,charges in stepped large area and migrates rapidly through fractures,and enriches in dominant fractures and pores.The root cause of ladder-like charge is the multiple scales of pores.The widespread source rock with high hydrocarbon generation intensity is the material basis for tight oil enrichment;the dominant source reservoir assemblage is the basic unit for tight oil enrichment;fractures and beddings are conducive to local rapid migration of tight oil;fractures and pores work together to control the enrichment of tight oil.Two typical accumulation models of tight oil are established,namely"source reservoir in coexistence,four optimal factors controlling enrichment around central area,and large-scale continuous distribution"for a large freshwater lake clastic rock basin and"source reservoir integration,four optimal factors controlling enrichment,central area distribution,small in size but high in enrichment degree"for a small saline lake diamictite depression.
文摘A structure of central air conditioning system in building and its running pattern are proposed in order to perform optimum energy saving strategy. The design of room temperature controller is taken as an example to discuss the design of fuzzy controller using common microprogrammed control unit (MCU) in detail. Based on fuzzy theory the query control tables fixed in read only memory (ROM) of MCU are established to realize the energy saving in the room temperature controller and the reasoning procedure is analyzed. The diagram of hardware design and the flow chart of software of room temperature controller are presented. The results show that the proposed method is practical and effective to achieve the energy saving goal.
基金Supported by Foundations of SiChuan Educational Committee under Grant No 13ZB0198the National Natural Science Foundation of China under Grant Nos 61104224,81373531,61104143 and 61573107The Science and Technology Fund Project of SWPU(2013XJR011)
文摘The influence of a node in a network can be characterized by its macroscopic properties such as eigenvector centrality. An issue of significant theoretical and practical interest is to modify the influence or roles of the nodes in a network, and recent advances indicate that this can be achieved by just controlling a subset of nodes: the socalled controllers. However, the relationship between the structural properties of a network and its controllability, e.g., the control of node importance, is still not well understood. Here we systematically" explore this relationship by constructing scale-free networks with a fixed degree sequence and tunable network characteristics. We calculate the relative size (nc*) of the minimai controlling set required to controi the importance of each individual node in a network. It is found that while clustering has no significant impact on nc*, changes in degree-degree correlations, heterogeneity and the average degree of networks demonstrate a discernible impact on its controllability.