期刊文献+
共找到198篇文章
< 1 2 10 >
每页显示 20 50 100
基于自组织特征映射模型(SOFM)网络的中国自然资源生态安全区划 被引量:7
1
作者 邹易 蒙吉军 +3 位作者 吴英迪 魏婵娟 程浩然 马宇翔 《生态学报》 CAS CSCD 北大核心 2024年第1期171-182,共12页
自然资源生态安全是国家安全的重要组成部分,自然资源生态安全区划对保障区域可持续发展提供了重要途径。基于自然资源数据、生态环境数据和相关区划资料,从生态敏感性与生态服务重要性角度构建了自然资源生态安全评价指标体系,进而揭... 自然资源生态安全是国家安全的重要组成部分,自然资源生态安全区划对保障区域可持续发展提供了重要途径。基于自然资源数据、生态环境数据和相关区划资料,从生态敏感性与生态服务重要性角度构建了自然资源生态安全评价指标体系,进而揭示了中国自然资源生态安全的空间格局;通过建立区划的原则和指标,按照一级区主要反映自然资源空间分布格局,二级区主要揭示自然资源生态安全水平的差异,采用SOFM网络制订了中国自然资源生态安全区划方案。结果显示:(1)中国自然资源生态安全水平整体偏低,以中警与重警状态区域为主,安全和较安全状态的区域仅占24.22%,其中低安全等级区多分布于400mm等降水量线以西的干旱、半干旱区,高安全等级区则集中分布于水热资源与生物资源较为丰富的东南部地区;(2)中国自然资源生态安全区划方案包括8个一级区与27个二级区,总结归纳各大区自然资源的特征和威胁生态安全的问题,并针对二级区自然资源生态安全状况提出了对策建议。研究结果可为分区、分类推进全国自然资源可持续利用和国土空间优化提供理论支持与决策依据。 展开更多
关键词 自然资源生态安全 自组织特征映射模型(sofm)网络 区划方案
在线阅读 下载PDF
An improved de-interleaving algorithm of radar pulses based on SOFM with self-adaptive network topology 被引量:2
2
作者 JIANG Wen FU Xiongjun +1 位作者 CHANG Jiayun QIN Rui 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第4期712-721,共10页
As a core part of the electronic warfare(EW) system,de-interleaving is used to separate interleaved radar signals. As interleaved radar pulses become more complex and denser, intelligent classification of radar signal... As a core part of the electronic warfare(EW) system,de-interleaving is used to separate interleaved radar signals. As interleaved radar pulses become more complex and denser, intelligent classification of radar signals has become very important. The self-organizing feature map(SOFM) is an excellent artificial neural network, which has huge advantages in intelligent classification of complex data. However, the de-interleaving process based on SOFM is faced with the problems that the initialization of the map size relies on prior information and the network topology cannot be adaptively adjusted. In this paper, an SOFM with self-adaptive network topology(SANT-SOFM) algorithm is proposed to solve the above problems. The SANT-SOFM algorithm first proposes an adaptive proliferation algorithm to adjust the map size, so that the initialization of the map size is no longer dependent on prior information but is gradually adjusted with the input data. Then,structural optimization algorithms are proposed to gradually optimize the topology of the SOFM network in the iterative process,constructing an optimal SANT. Finally, the optimized SOFM network is used for de-interleaving radar signals. Simulation results show that SANT-SOFM could get excellent performance in complex EW environments and the probability of getting the optimal map size is over 95% in the absence of priori information. 展开更多
关键词 de-interleaving self-organizing feature map(sofm) self-adaptive network topology(SANT)
在线阅读 下载PDF
基于CNN和Transformer双流融合的人体姿态估计
3
作者 李鑫 张丹 +2 位作者 郭新 汪松 陈恩庆 《计算机工程与应用》 北大核心 2025年第5期187-199,共13页
卷积神经网络(CNN)和Transformer模型在人体姿态估计中有着广泛应用,然而Transformer更注重捕获图像的全局特征,忽视了局部特征对于人体姿态细节的重要性,而CNN则缺乏Transformer的全局建模能力。为了充分利用CNN处理局部信息和Transfor... 卷积神经网络(CNN)和Transformer模型在人体姿态估计中有着广泛应用,然而Transformer更注重捕获图像的全局特征,忽视了局部特征对于人体姿态细节的重要性,而CNN则缺乏Transformer的全局建模能力。为了充分利用CNN处理局部信息和Transformer处理全局信息的优势,构建一种CNN-Transformer双流的并行网络架构来聚合丰富的特征信息。由于传统Transformer的输入需要将图片展平为多个patch,不利于提取对位置敏感的人体结构信息,因此将其多头注意力结构进行改进,使模型输入能够保持原始2D特征图的结构;同时提出特征耦合模块融合两个分支不同分辨率下的特征,最大限度地保留局部特征与全局特征;最后引入改进后的坐标注意力模块(coordinate attention),进一步提升网络的特征提取能力。在COCO和MPII数据集上的实验结果表明所提模型相对目前主流模型具有更高的检测精度,从而说明所提模型能够充分捕获并融合人体姿态中的局部和全局特征。 展开更多
关键词 卷积神经网络 TRANSFORMER 局部特征 全局特征 2D特征图 特征耦合
在线阅读 下载PDF
基于改进SOM网络的聚类算法
4
作者 蒋锐 范姝文 +1 位作者 王小明 徐友云 《计算机科学》 北大核心 2025年第8期162-170,共9页
在自组织映射(Self-organizing Map,SOM)模型的训练过程中,不同类数据对权重矩阵的更新有不同作用,某一类数据对权重矩阵的更新会对其他类获胜神经元特征向量产生偏离其数据特征的影响,从而降低算法聚类精度。针对以上问题,提出一种改... 在自组织映射(Self-organizing Map,SOM)模型的训练过程中,不同类数据对权重矩阵的更新有不同作用,某一类数据对权重矩阵的更新会对其他类获胜神经元特征向量产生偏离其数据特征的影响,从而降低算法聚类精度。针对以上问题,提出一种改进的基于置信度SOM模型(Improved Confidence-based SOM Model,icSOM)。样本数据首先由K-means算法初步分类,为模型训练提供更多的数据信息;然后将预分类后的数据分别训练相互独立的SOM模型,以消除不同类之间的影响;最后在传统SOM模型基础上提出置信度矩阵概念,通过综合判断获胜神经元的置信度及其与输入数据间的欧氏距离最终得到置信神经元,根据置信神经元所属类别给数据分配聚类标签。在鸢尾花数据集(Iris)及葡萄酒数据集(Wine)上利用icSOM进行聚类分析,实验结果表明,所提算法可以更好地处理样本数据,取得了较好的聚类效果。 展开更多
关键词 机器学习 无监督学习 聚类 自组织特征映射神经网络
在线阅读 下载PDF
基于注意力机制和多尺度融合的人群计数网络
5
作者 栾方军 龚琪 袁帅 《计算机工程》 北大核心 2025年第3期352-361,共10页
为了应对人群图像中尺度变化和背景干扰的问题,提出一种人群计数网络模型,旨在充分利用多尺度信息并降低背景噪声的影响。首先采用ConvNeXt作为主干网络,用于提取特征。其次为了有效融合不同层次的特征,提出多层次特征融合模块(MFFM),... 为了应对人群图像中尺度变化和背景干扰的问题,提出一种人群计数网络模型,旨在充分利用多尺度信息并降低背景噪声的影响。首先采用ConvNeXt作为主干网络,用于提取特征。其次为了有效融合不同层次的特征,提出多层次特征融合模块(MFFM),将主干网络中不同层次的特征进行跨尺度融合,融合后的特征包含了不同尺度的语义信息,可以更好地适应人群计数任务中的尺度变化问题。接着为了更好地解决人群计数中存在的挑战,设计一个多尺度注意力模块(MSAM),根据不同感受野的分支提取不同尺度的特征,利用选择性Kernel通道注意力(SKCA)缓解多列结构存在的特征相似问题,并将模块生成的注意力图反馈到对应的尺度特征中,以抑制背景的干扰。网络模型在ShanghaiTechA数据集中的平均绝对误差(MAE)和均方根误差(RMSE)分别达到了56.1和93.9;在ShanghaiTechB数据集中的MAE和RMSE分别达到了6.1和10.3;在UCF_CC_50数据集中的MAE和RMSE分别达到了174.9和252.7;在Mall数据集中的MAE和RMSE分别达到了1.42和1.85。在公开数据集上的实验结果表明,提出的网络模型与现有代表性的人群计数方法相比,在提升人群计数任务的准确性和鲁棒性方面均取得了明显进展。 展开更多
关键词 人群计数 多尺度特征融合 注意力机制 神经网络 密度图
在线阅读 下载PDF
基于SOFM神经网络的茄子图像分割方法 被引量:9
6
作者 姚立健 丁为民 +1 位作者 赵三琴 杨玲玲 《南京农业大学学报》 CAS CSCD 北大核心 2008年第3期140-144,共5页
以将茄子图像从复杂的背景中分割出来为目的,在分析茄子图像色差和色相的基础上,选取R-B、G-B和H作为自组织特征映射(SOFM)网络的输入特征向量,利用该网络自组织学习的特征进行聚类。采用信噪比、面积比、分割时间和傅里叶边界描述子等... 以将茄子图像从复杂的背景中分割出来为目的,在分析茄子图像色差和色相的基础上,选取R-B、G-B和H作为自组织特征映射(SOFM)网络的输入特征向量,利用该网络自组织学习的特征进行聚类。采用信噪比、面积比、分割时间和傅里叶边界描述子等指标来评价分割精度。试验证明,基于SOFM神经网络图像分割评价优于单一阈值分割,适合复杂背景的彩色图像分割。 展开更多
关键词 茄子 图像分割 自组织特征映射(sofm)网络 傅里叶描述子
在线阅读 下载PDF
SOFM神经网络在道路交通事故分类评价中的应用 被引量:6
7
作者 李电生 刘凯 赵闯 《中国安全科学学报》 CAS CSCD 2005年第7期88-91,共4页
随着我国道路交通需求的持续增长和交通建设的快速发展,交通环境和条件有了很大改善,但交通事故仍频频发生,且呈不断增多的趋势,安全已成为交通管理当中一个不容忽视的问题。为了减少交通事故发生次数,降低事故损失程度,需要对交通事故... 随着我国道路交通需求的持续增长和交通建设的快速发展,交通环境和条件有了很大改善,但交通事故仍频频发生,且呈不断增多的趋势,安全已成为交通管理当中一个不容忽视的问题。为了减少交通事故发生次数,降低事故损失程度,需要对交通事故进行分类管理,以便针对不同种类和特征的交通事故采取专门的措施。笔者应用SOFM(自组织特征映射)神经网络对不同原因的道路交通事故进行了分类评价,并根据实际数据的计算和分析提出了相应的防护和控制措施。 展开更多
关键词 道路交通事故 sofm神经网络 分类评价 交通环境 交通管理
在线阅读 下载PDF
基于SOFM神经网络的边坡稳定性评价 被引量:22
8
作者 薛新华 张我华 刘红军 《岩土力学》 EI CAS CSCD 北大核心 2008年第8期2236-2240,共5页
针对边坡工程稳定性分析中参数的不确定性,在分析自组织特征映射神经网络(SOFM)基本学习算法的基础上,从提高算法收敛速度和性能出发,将自组织特征映射神经网络基本学习算法加以改进,据此建立了评价边坡稳定状态的SOFM神经网络模型。然... 针对边坡工程稳定性分析中参数的不确定性,在分析自组织特征映射神经网络(SOFM)基本学习算法的基础上,从提高算法收敛速度和性能出发,将自组织特征映射神经网络基本学习算法加以改进,据此建立了评价边坡稳定状态的SOFM神经网络模型。然后用收集到的边坡稳定工程实例作为样本,对该模型进行训练和检验,并与BP神经网络判别结果对比。结果表明,SOFM神经网络性能良好、预测精度高,是边坡稳定性评价的一种有效方法。 展开更多
关键词 自组织特征映射 神经网络 边坡稳定 评价
在线阅读 下载PDF
基于SOFM神经网络的无线传感器网络数据融合算法 被引量:19
9
作者 杨永健 刘帅 《传感技术学报》 CAS CSCD 北大核心 2013年第12期1757-1763,共7页
为了降低无线传感器网络的通信量,降低能耗,延长网络的生命周期,提出了一种基于SOFM(Self-Organizing Feature Mapping)神经网络的数据融合算法(SOFMDA),该算法将自组织映射神经网络和无线传感器网络分簇路由协议相结合,使簇中的各个节... 为了降低无线传感器网络的通信量,降低能耗,延长网络的生命周期,提出了一种基于SOFM(Self-Organizing Feature Mapping)神经网络的数据融合算法(SOFMDA),该算法将自组织映射神经网络和无线传感器网络分簇路由协议相结合,使簇中的各个节点完成神经元的工作,按照数据的特征对其进行分类,提取同类数据的特征,将特征数据发送到汇聚节点,从而减少了数据发送量,延长网络的生命期。仿真实验表明,与普通的数据融合方法相比,SOFMDA能够在保证数据准确性的前提下,有效减少网络通信量,延长网络生命期。在文中仿真实验的时间内,达到了LEACH算法性能的1.5倍。 展开更多
关键词 无线传感器网络 数据融合算法 自组织映射神经网络 特征提取
在线阅读 下载PDF
基于SOFM神经网络和HMM的动调陀螺仪故障预测方法研究 被引量:7
10
作者 尚永爽 许爱强 吴忠德 《机械科学与技术》 CSCD 北大核心 2012年第10期1711-1715,1720,共6页
针对动调陀螺仪性能参数的退化特点,提出了一种自组织特征映射(SOFM)神经网络和隐马尔可夫模型(HMM)相结合的动调陀螺仪故障预测方法。采集动调陀螺仪的振动、温度、随机漂移、电机功率、电源电压和频率等信号作为表征陀螺退化状态的特... 针对动调陀螺仪性能参数的退化特点,提出了一种自组织特征映射(SOFM)神经网络和隐马尔可夫模型(HMM)相结合的动调陀螺仪故障预测方法。采集动调陀螺仪的振动、温度、随机漂移、电机功率、电源电压和频率等信号作为表征陀螺退化状态的特征信息,利用SOFM神经网络实现多源传感器信息融合;利用HMM方法将不易检测到的早期故障信号转变为容易观测到的信息,实现动调陀螺仪的故障预测。实验结果表明:采用SOFM方法对传感信号的信息融合,能够简单、有效地提取陀螺退化状态的特征信息。运用HMM进行训练和测试,说明了该方法在故障预测中的有效性。 展开更多
关键词 故障预测 自组织特征映射 隐马尔可夫模型 动调陀螺仪
在线阅读 下载PDF
SOFM储层综合评价方法及其在延吉盆地的应用 被引量:6
11
作者 郄瑞卿 薛林福 +1 位作者 王满 王丽华 《吉林大学学报(地球科学版)》 EI CAS CSCD 北大核心 2009年第1期168-174,共7页
通过对已有储层评价方法优势与不足的分析,提出在空间数据库基础上应用自组织特征映射神经网络进行油气储层评价,并对延吉盆地大砬子组储层进行了评价。评价结果显示:Ⅰ级储集层主要发育于朝阳川凹陷中央—延D4井西缘、呈椭圆状分布,朝... 通过对已有储层评价方法优势与不足的分析,提出在空间数据库基础上应用自组织特征映射神经网络进行油气储层评价,并对延吉盆地大砬子组储层进行了评价。评价结果显示:Ⅰ级储集层主要发育于朝阳川凹陷中央—延D4井西缘、呈椭圆状分布,朝阳川凹陷西缘即延D6、延3之间呈月牙状分布;Ⅱ级储集层区块较大,分布集中在朝阳川凹陷周缘及帽儿山凸起,在清茶馆凹陷的东缘、南缘和德新凹陷的北缘呈不规则分布;Ⅲ级主要发育于朝阳川凹陷中央-朝阳川镇南部,清茶馆凹陷东缘,呈条带、小块状零星分布,德新凹陷大部呈不规则分布;Ⅳ级主要发育于西部隆起区、练花洞单斜一带,在茶清馆凹陷中央也有零星分布;其它地区是储层物性发育较差的Ⅴ级。 展开更多
关键词 自组织特征映射神经网络 储层 延吉盆地
在线阅读 下载PDF
一种基于SOFM神经网络的高光谱图像快速分类方法 被引量:3
12
作者 谌德荣 陶鹏 +1 位作者 宫久路 范宁军 《兵工学报》 EI CAS CSCD 北大核心 2009年第2期165-169,共5页
高光谱图像的快速准确分类是遥感图像处理的关键技术之一。本文提出了区域特征光谱(RFS)的概念,并采用空间邻域聚类方法提取区域特征光谱;提出了以区域特征光谱作为SOFM神经网络输入的RFS-SOFM高光谱图像快速分类方法,该方法通过区域特... 高光谱图像的快速准确分类是遥感图像处理的关键技术之一。本文提出了区域特征光谱(RFS)的概念,并采用空间邻域聚类方法提取区域特征光谱;提出了以区域特征光谱作为SOFM神经网络输入的RFS-SOFM高光谱图像快速分类方法,该方法通过区域特征光谱代替单个像元光谱实现神经网络运算量的降低和对图像噪声的抑制。对AVIRIS图像数据的仿真结果表明:RFS-SOFM分类精度高于SOFM神经网络和K-均值算法,计算量约为K-均值的163.6%,SOFM神经网络的5.9%. 展开更多
关键词 摄影测量与遥感技术 高光谱图像 分类 sofm神经网络 区域特征光谱
在线阅读 下载PDF
改进的SOFM及其在矢量量化中的应用 被引量:7
13
作者 段勇 徐心和 崔宝侠 《系统仿真学报》 EI CAS CSCD 北大核心 2006年第3期718-721,共4页
根据等失真(Equidistortion)理论提出了一种基于改进的自组织特征映射(SOFM)神经网络的矢量量化方法,该算法将失真敏感机制引入神经网络的竞争学习过程。通过调整码字的部分失真来指导神经网络的学习,以使得所设计的码书平均失真最小。... 根据等失真(Equidistortion)理论提出了一种基于改进的自组织特征映射(SOFM)神经网络的矢量量化方法,该算法将失真敏感机制引入神经网络的竞争学习过程。通过调整码字的部分失真来指导神经网络的学习,以使得所设计的码书平均失真最小。同时把矢量量化应用于图像的小波变换域,根据图像小波变换高频系数的空间分布特点来组织码书,从而进一步提高码书的质量和适应性。通过实验对算法的性能进行了分析,证明了算法的有效性。 展开更多
关键词 部分失真 矢量量化 竞争学习 自组织特征映射神经网络 小波变换
在线阅读 下载PDF
应用SOFM神经网络对福州市道路交通事故的研究 被引量:2
14
作者 岳小泉 丁艺 +1 位作者 黄晓婷 李晓娟 《森林工程》 2006年第4期35-38,共4页
应用SOFM(自组织特征映射)神经网络对福州市不同原因的交通事故进行了分类分析,以便针对不同种类和特征的交通事故采取专门的措施,并根据实际数据分析提出了相应的防范和控制措施。
关键词 交通事故 交通安全 神经网络 自组织特征映射
在线阅读 下载PDF
SOFM神经网络在处理非空间属性中的应用 被引量:2
15
作者 孙志伟 赵政 《计算机应用》 CSCD 北大核心 2006年第11期2667-2669,2673,共4页
由于非空间属性维数较高,空间聚类算法在处理非空间属性约束时难点首先在于如何为这些非空间属性设定参数,然后是哪些非空间属性在聚类中将起主要作用,并真正影响聚类的结果。对这些问题进行了讨论,并提出使用神经网络中自组织映射的方... 由于非空间属性维数较高,空间聚类算法在处理非空间属性约束时难点首先在于如何为这些非空间属性设定参数,然后是哪些非空间属性在聚类中将起主要作用,并真正影响聚类的结果。对这些问题进行了讨论,并提出使用神经网络中自组织映射的方法来首先选择哪些非空间属性将被优先考虑,使用自组织特征映射(SOFM)方法对非空间属性聚类,最后把非空间属性和空间属性聚类进行合并得到最终的聚类结果的方法。 展开更多
关键词 聚类算法 高维 神经网络 自组织特征映射 约束
在线阅读 下载PDF
基于改进SOFM的矢量量化图像压缩 被引量:2
16
作者 王茂芝 郭彬 徐文皙 《成都理工大学学报(自然科学版)》 CAS CSCD 北大核心 2007年第6期648-652,共5页
在介绍矢量量化和自组织特征映射神经网络的基础上,针对基于自组织特征映射神经网络的矢量量化算法,在初始码书生成、获胜神经元搜索策略以及调整获胜码字及其拓扑领域权值等方面进行改进。实验结果表明改进算法具有合理性和有效性。
关键词 自组织特征映射 矢量量化 码书 图像压缩
在线阅读 下载PDF
SOFM网络在结构损伤位置识别中的应用 被引量:2
17
作者 张育智 李乔 单德山 《振动与冲击》 EI CSCD 北大核心 2007年第2期160-163,170,共5页
为实现结构的损伤定位,克服BP神经网络受病态样本影响大且抗噪声能力弱等缺点,采用SOFM(Self-Organizing Feature Map)网络,以结构振动组合损伤指标为网络输入,对一桁架结构进行了损伤位置识别研究。识别结果显示SOFM网络能够区分相似样... 为实现结构的损伤定位,克服BP神经网络受病态样本影响大且抗噪声能力弱等缺点,采用SOFM(Self-Organizing Feature Map)网络,以结构振动组合损伤指标为网络输入,对一桁架结构进行了损伤位置识别研究。识别结果显示SOFM网络能够区分相似样本,由网络的拓扑图可以直观地评价网络训练和识别结果。在不考虑噪声情况下,网络可以正确识别损伤位置,在噪声水平不大于30%情况下,除个别单元外,网络对其他单元损伤的正确识别率均高于95%,显示出很好的抗噪声能力。 展开更多
关键词 自组织特征映射 神经网络 损伤位置识别 组合损伤指标
在线阅读 下载PDF
基于HGNN和多尺度特征融合的弱监督人群计数方法
18
作者 李智 苗壮壮 杨连报 《现代电子技术》 北大核心 2025年第14期129-136,共8页
人群计数作为一项关键技术,在公共安全、城市规划以及交通管理等多个领域发挥着至关重要的作用。全监督计数方法要求对行人进行精确的点对点标注,这不仅耗费大量的人力资源,而且需要昂贵的物质资源。相比之下,弱监督学习方法仅需要计数... 人群计数作为一项关键技术,在公共安全、城市规划以及交通管理等多个领域发挥着至关重要的作用。全监督计数方法要求对行人进行精确的点对点标注,这不仅耗费大量的人力资源,而且需要昂贵的物质资源。相比之下,弱监督学习方法仅需要计数级别的注释,有效地解决了这一问题。然而,现有弱监督人群计数往往忽略了人群图像内部的密度分布问题,无法达到与全监督人群计数方法相似的计数性能。为了解决该问题,提出一种基于HGNN和多尺度特征融合的弱监督人群计数方法。利用超图挖掘人群区域内在的关联关系,并设计了一个低分辨率的多尺度特征融合模块来聚合多尺度的行人特征。在4个著名的基准人群计数数据集上进行了实验,结果表明,与现有的弱监督方法相比,所提方法的MAE提高了2.2%,RMSE值仅与当下最优方法相差3.9。此外,在昆明5号地铁线的站台视频进行了实际测试,验证了该方法能够实现高准确度的人群数量估计。 展开更多
关键词 人群计数 弱监督学习方法 多尺度特征 超图神经网络 特征映射 Swin Transformer
在线阅读 下载PDF
用于语音识别中的SOFM矢量量化方法 被引量:1
19
作者 林宝成 黄志同 《南京理工大学学报》 CAS CSCD 1996年第1期59-62,74,共5页
该文讨论了神经网络语音识别系统中的KohonenSOFM神经网络的矢量量化(VQ)的原理与过程,着重解决了其在实际应用时的若干问题,包括网络大小,学习步幅函数以及矢量量化过程中的公平竞争学习的控制函数的选定。过讨论了... 该文讨论了神经网络语音识别系统中的KohonenSOFM神经网络的矢量量化(VQ)的原理与过程,着重解决了其在实际应用时的若干问题,包括网络大小,学习步幅函数以及矢量量化过程中的公平竞争学习的控制函数的选定。过讨论了基于听觉模型的声学特性的提取与处理,这与VQ性能息息相关。系统应用的实验表明,该神经网络在语音识别系统中具有良好性能。 展开更多
关键词 神经网络 语音识别 自组织特征映射 矢量量化
在线阅读 下载PDF
基于SOFM的岸桥提升电机状态识别及可视化 被引量:1
20
作者 唐刚 杨志启 胡雄 《东华大学学报(自然科学版)》 CSCD 北大核心 2017年第4期559-564,共6页
研究并分析自组织特征映射(self-organizing feature map,SOFM)神经网络的结构和算法,并应用于岸桥提升电机的状态识别及可视化.通过运用SOFM,对属性约简后的数据进行聚类及可视化分析,以有效值、脉冲指标和裕度指标为特征向量,得到3种... 研究并分析自组织特征映射(self-organizing feature map,SOFM)神经网络的结构和算法,并应用于岸桥提升电机的状态识别及可视化.通过运用SOFM,对属性约简后的数据进行聚类及可视化分析,以有效值、脉冲指标和裕度指标为特征向量,得到3种主要的电机状态,并利用Matlab实现仿真可视化.通过对样本数据处理,实现电机状态的准确识别,从而更好地监测岸桥提升电机,同时也为机械状态的识别和维护提供一种新途径. 展开更多
关键词 神经网络 自组织特征映射 无监督学习 状态识别 可视化
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部