There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced se...There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced self-adaptiveevolutionary algorithm (ESEA) to overcome the demerits above. In the ESEA, four evolutionary operators are designed to enhance the evolutionary structure. Besides, the ESEA employs four effective search strategies under the framework of the self-adaptive learning. Four groups of the experiments are done to find out the most suitable parameter values for the ESEA. In order to verify the performance of the proposed algorithm, 26 state-of-the-art test functions are solved by the ESEA and its competitors. The experimental results demonstrate that the universality and robustness of the ESEA out-perform its competitors.展开更多
As far as the minimal spanning tree problem for the digraph with asymmetric weightsis concerned, an explicit integer programming model is proposed, which could be solved successfullyusing the integer programming packa...As far as the minimal spanning tree problem for the digraph with asymmetric weightsis concerned, an explicit integer programming model is proposed, which could be solved successfullyusing the integer programming packages such as LINDO, and furthermore this model is extendedinto the stochastic version, that is, the minimal spanning tree problem for the digraph with theweights is not constant but random variables. Several algorithms are also developed to solve themodels. Finally, a numerical demonstration is given.展开更多
基金supported by the Aviation Science Funds of China(2010ZC13012)the Fund of Jiangsu Innovation Program for Graduate Education (CXLX11 0203)
文摘There are many population-based stochastic search algorithms for solving optimization problems. However, the universality and robustness of these algorithms are still unsatisfactory. This paper proposes an enhanced self-adaptiveevolutionary algorithm (ESEA) to overcome the demerits above. In the ESEA, four evolutionary operators are designed to enhance the evolutionary structure. Besides, the ESEA employs four effective search strategies under the framework of the self-adaptive learning. Four groups of the experiments are done to find out the most suitable parameter values for the ESEA. In order to verify the performance of the proposed algorithm, 26 state-of-the-art test functions are solved by the ESEA and its competitors. The experimental results demonstrate that the universality and robustness of the ESEA out-perform its competitors.
文摘As far as the minimal spanning tree problem for the digraph with asymmetric weightsis concerned, an explicit integer programming model is proposed, which could be solved successfullyusing the integer programming packages such as LINDO, and furthermore this model is extendedinto the stochastic version, that is, the minimal spanning tree problem for the digraph with theweights is not constant but random variables. Several algorithms are also developed to solve themodels. Finally, a numerical demonstration is given.