A self-adaptive differential evolution neutron spectrum unfolding algorithm(SDENUA)is established in this study to unfold the neutron spectra obtained from a water-pumping-injection multilayered concentric sphere neut...A self-adaptive differential evolution neutron spectrum unfolding algorithm(SDENUA)is established in this study to unfold the neutron spectra obtained from a water-pumping-injection multilayered concentric sphere neutron spectrometer(WMNS).Specifically,the neutron fluence bounds are estimated to accelerate the algorithm convergence,and the minimum error between the optimal solution and input neutron counts with relative uncertainties is limited to 10^(-6)to avoid unnecessary calculations.Furthermore,the crossover probability and scaling factor are self-adaptively controlled.FLUKA Monte Carlo is used to simulate the readings of the WMNS under(1)a spectrum of Cf-252 and(2)its spectrum after being moderated,(3)a spectrum used for boron neutron capture therapy,and(4)a reactor spectrum.Subsequently,the measured neutron counts are unfolded using the SDENUA.The uncertainties of the measured neutron count and the response matrix are considered in the SDENUA,which does not require complex parameter tuning or an a priori default spectrum.The results indicate that the solutions of the SDENUA agree better with the IAEA spectra than those of MAXED and GRAVEL in UMG 3.1,and the errors of the final results calculated using the SDENUA are less than 12%.The established SDENUA can be used to unfold spectra from the WMNS.展开更多
A differential steering system is presented for electric vehicle with motorized wheels and a dynamic model of three-freedom car is built.Based on these models,the quantitative expressions of the road feel,sensitivity,...A differential steering system is presented for electric vehicle with motorized wheels and a dynamic model of three-freedom car is built.Based on these models,the quantitative expressions of the road feel,sensitivity,and operation stability of the steering are derived.Then,according to the features of multi-constrained optimization of multi-objective function,a multi-island genetic algorithm(MIGA)is designed.Taking the road feel and the sensitivity of the steering as optimization objectives and the operation stability of the steering as a constraint,the system parameters are optimized.The simulation results show that the system optimized with MIGA can improve the steering road feel,and guarantee the operation stability and steering sensibility.展开更多
Our differential and grading toothed roll crusher blends the advantages of a toothed roll crusher and a jaw crusher and possesses characteristics of great crushing,high breaking efficiency,multi-sieving and has,for th...Our differential and grading toothed roll crusher blends the advantages of a toothed roll crusher and a jaw crusher and possesses characteristics of great crushing,high breaking efficiency,multi-sieving and has,for the moment,made up for the short- comings of the toothed roll crusher.The moving jaw of the crusher is a crank-rocker mechanism.For optimizing the dynamic per- formance and improving the cracking capability of the crusher,a mathematical model was established to optimize the transmission angleγand to minimize the travel characteristic value m of the moving jaw.Genetic algorithm is used to optimize the crusher crank-rocker mechanism for multi-object design and an optimum result is obtained.According to the implementation,it is shown that the performance of the crusher and the cracking capability of the moving jaw have been improved.展开更多
Cognitive emergency communication net-works can meet the requirements of large capac-ity,high density and low delay in emergency com-munications.This paper analyzes the properties of emergency users in cognitive emerg...Cognitive emergency communication net-works can meet the requirements of large capac-ity,high density and low delay in emergency com-munications.This paper analyzes the properties of emergency users in cognitive emergency communi-cation networks,designs a multi-objective optimiza-tion and proposes a novel multi-objective bacterial foraging optimization algorithm based on effective area(MOBFO-EA)to maximize the transmission rate while maximizing the lifecycle of the network.In the algorithm,the effective area is proposed to prevent the algorithm from falling into a local optimum,and the diversity and uniformity of the Pareto-optimal solu-tions distributed in the effective area are used to eval-uate the optimization algorithm.Then,the dynamic preservation is used to enhance the competitiveness of excellent individuals and the uniformity and diversity of the Pareto-optimal solutions in the effective area.Finally,the adaptive step size,adaptive moving direc-tion and inertial weight are used to shorten the search time of bacteria and accelerate the optimization con-vergence.The simulation results show that the pro-posed MOBFO-EA algorithm improves the efficiency of the Pareto-optimal solutions by approximately 55%compared with the MOPSO algorithm and by approx-imately 60%compared with the MOBFO algorithm and has the fastest and smoothest convergence.展开更多
A new optimization method is proposed to realize the synthesis of duplexers.The traditional optimization method takes all the variables of the duplexer into account,resulting in too many variables to be optimized when...A new optimization method is proposed to realize the synthesis of duplexers.The traditional optimization method takes all the variables of the duplexer into account,resulting in too many variables to be optimized when the order of the duplexer is too high,so it is not easy to fall into the local solution.In order to solve this problem,a new optimization strategy is proposed in this paper,that is,two-channel filters are optimized separately,which can reduce the number of optimization variables and greatly reduce the probability of results falling into local solutions.The optimization method combines the self-adaptive differential evolution algorithm(SADE)with the Levenberg-Marquardt(LM)algorithm to get a global solution more easily and accelerate the optimization speed.To verify its practical value,we design a 5 G duplexer based on the proposed method.The duplexer has a large external coupling,and how to achieve a feed structure with a large coupling bandwidth at the source is also discussed.The experimental results show that the proposed optimization method can realize the synthesis of higher-order duplexers compared with the traditional methods.展开更多
Background:Laser scanning and individual-tree detection are used increasingly in forest inventories.As a consequence,methods that optimize forest management at the level of individual trees will be gradually developed...Background:Laser scanning and individual-tree detection are used increasingly in forest inventories.As a consequence,methods that optimize forest management at the level of individual trees will be gradually developed and adopted.Results:The current study proposed a hierarchical two-level optimization method for tree-level planning where the cutting years are optimized at the higher level.The lower-level optimization allocates the trees to the cutting events in an optimal way.The higher-level optimization employed differential evolution whereas the lower-level problem was solved with the simulated annealing metaheuristic.The method was demonstrated with a 30 m30 m sample plot of planted Larix olgensis.The baseline case maximized the net present value as the only management objective.The solution suggested heavy thinning from above and a rotation length of 62 years.The baseline problem was enhanced to mixed stands where species diversity was used as another management objective.The method was also demonstrated in a problem that considered the complexity of stand structure,in addition to net present value.The objective variables that were used to measure complexity were the Shannon index(species diversity),Gini index(tree size diversity),and the index of Clark and Evans,which was used to describe the spatial distribution of trees.The article also presents a method to include natural advance regeneration in the optimization problem and optimize the parameters of simulated annealing simultaneously with the cutting years.Conclusions:The study showed that optimization approaches developed for forest-level planning can be adapted to problems where treatment prescriptions are required for individual trees.展开更多
基金supported by the National Key R&D Program of the MOST of China(No.2016YFA0300204)the National Natural Science Foundation of China(Nos.11227902)as part of the Si PáME2beamline project+1 种基金supported by the National Natural Science Foundation of China(No.41774120)the Sichuan Science and Technology Program(No.2021YJ0329)。
文摘A self-adaptive differential evolution neutron spectrum unfolding algorithm(SDENUA)is established in this study to unfold the neutron spectra obtained from a water-pumping-injection multilayered concentric sphere neutron spectrometer(WMNS).Specifically,the neutron fluence bounds are estimated to accelerate the algorithm convergence,and the minimum error between the optimal solution and input neutron counts with relative uncertainties is limited to 10^(-6)to avoid unnecessary calculations.Furthermore,the crossover probability and scaling factor are self-adaptively controlled.FLUKA Monte Carlo is used to simulate the readings of the WMNS under(1)a spectrum of Cf-252 and(2)its spectrum after being moderated,(3)a spectrum used for boron neutron capture therapy,and(4)a reactor spectrum.Subsequently,the measured neutron counts are unfolded using the SDENUA.The uncertainties of the measured neutron count and the response matrix are considered in the SDENUA,which does not require complex parameter tuning or an a priori default spectrum.The results indicate that the solutions of the SDENUA agree better with the IAEA spectra than those of MAXED and GRAVEL in UMG 3.1,and the errors of the final results calculated using the SDENUA are less than 12%.The established SDENUA can be used to unfold spectra from the WMNS.
基金Supported by the National Natural Science Foundation of China(51375007,51205191)the Visiting Scholar Foundation of the State Key Lab of Mechanical Transmission in Chongqing University+1 种基金the Funds from the Postgraduate Creative Base in Nanjing University of Aeronautics and Astronauticsthe Research Funding of Nanjing University of Aeronautics and Astronautics(NS2013015)
文摘A differential steering system is presented for electric vehicle with motorized wheels and a dynamic model of three-freedom car is built.Based on these models,the quantitative expressions of the road feel,sensitivity,and operation stability of the steering are derived.Then,according to the features of multi-constrained optimization of multi-objective function,a multi-island genetic algorithm(MIGA)is designed.Taking the road feel and the sensitivity of the steering as optimization objectives and the operation stability of the steering as a constraint,the system parameters are optimized.The simulation results show that the system optimized with MIGA can improve the steering road feel,and guarantee the operation stability and steering sensibility.
基金Project 50574091 supported by the National Natural Science Foundation of China
文摘Our differential and grading toothed roll crusher blends the advantages of a toothed roll crusher and a jaw crusher and possesses characteristics of great crushing,high breaking efficiency,multi-sieving and has,for the moment,made up for the short- comings of the toothed roll crusher.The moving jaw of the crusher is a crank-rocker mechanism.For optimizing the dynamic per- formance and improving the cracking capability of the crusher,a mathematical model was established to optimize the transmission angleγand to minimize the travel characteristic value m of the moving jaw.Genetic algorithm is used to optimize the crusher crank-rocker mechanism for multi-object design and an optimum result is obtained.According to the implementation,it is shown that the performance of the crusher and the cracking capability of the moving jaw have been improved.
基金National Natural Sci-ence Foundation of China(Grant Nos.61871241 and 61771263)Science and Technology Program of Nantong(Grant No.JC2019117).
文摘Cognitive emergency communication net-works can meet the requirements of large capac-ity,high density and low delay in emergency com-munications.This paper analyzes the properties of emergency users in cognitive emergency communi-cation networks,designs a multi-objective optimiza-tion and proposes a novel multi-objective bacterial foraging optimization algorithm based on effective area(MOBFO-EA)to maximize the transmission rate while maximizing the lifecycle of the network.In the algorithm,the effective area is proposed to prevent the algorithm from falling into a local optimum,and the diversity and uniformity of the Pareto-optimal solu-tions distributed in the effective area are used to eval-uate the optimization algorithm.Then,the dynamic preservation is used to enhance the competitiveness of excellent individuals and the uniformity and diversity of the Pareto-optimal solutions in the effective area.Finally,the adaptive step size,adaptive moving direc-tion and inertial weight are used to shorten the search time of bacteria and accelerate the optimization con-vergence.The simulation results show that the pro-posed MOBFO-EA algorithm improves the efficiency of the Pareto-optimal solutions by approximately 55%compared with the MOPSO algorithm and by approx-imately 60%compared with the MOBFO algorithm and has the fastest and smoothest convergence.
基金supported by the National Natural Science Foundation of China(NSFC)under project no.62071357the Fundamental Research Funds for the Central Unive rsities。
文摘A new optimization method is proposed to realize the synthesis of duplexers.The traditional optimization method takes all the variables of the duplexer into account,resulting in too many variables to be optimized when the order of the duplexer is too high,so it is not easy to fall into the local solution.In order to solve this problem,a new optimization strategy is proposed in this paper,that is,two-channel filters are optimized separately,which can reduce the number of optimization variables and greatly reduce the probability of results falling into local solutions.The optimization method combines the self-adaptive differential evolution algorithm(SADE)with the Levenberg-Marquardt(LM)algorithm to get a global solution more easily and accelerate the optimization speed.To verify its practical value,we design a 5 G duplexer based on the proposed method.The duplexer has a large external coupling,and how to achieve a feed structure with a large coupling bandwidth at the source is also discussed.The experimental results show that the proposed optimization method can realize the synthesis of higher-order duplexers compared with the traditional methods.
基金This research was financially supported by the Natural Science Foundation of China(No.U21A20244&No.32071758)the Fundamental Research Funds for the Central Universities of China(No.2572020BA01).
文摘Background:Laser scanning and individual-tree detection are used increasingly in forest inventories.As a consequence,methods that optimize forest management at the level of individual trees will be gradually developed and adopted.Results:The current study proposed a hierarchical two-level optimization method for tree-level planning where the cutting years are optimized at the higher level.The lower-level optimization allocates the trees to the cutting events in an optimal way.The higher-level optimization employed differential evolution whereas the lower-level problem was solved with the simulated annealing metaheuristic.The method was demonstrated with a 30 m30 m sample plot of planted Larix olgensis.The baseline case maximized the net present value as the only management objective.The solution suggested heavy thinning from above and a rotation length of 62 years.The baseline problem was enhanced to mixed stands where species diversity was used as another management objective.The method was also demonstrated in a problem that considered the complexity of stand structure,in addition to net present value.The objective variables that were used to measure complexity were the Shannon index(species diversity),Gini index(tree size diversity),and the index of Clark and Evans,which was used to describe the spatial distribution of trees.The article also presents a method to include natural advance regeneration in the optimization problem and optimize the parameters of simulated annealing simultaneously with the cutting years.Conclusions:The study showed that optimization approaches developed for forest-level planning can be adapted to problems where treatment prescriptions are required for individual trees.