期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于SAGWO算法的UCAVs动态协同任务分配 被引量:16
1
作者 魏政磊 赵辉 +2 位作者 黄汉桥 王骁飞 周瑞 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2018年第8期1651-1664,共14页
通过分析无人作战飞机(UCAV)优势概率和任务联合威胁以及定义任务时间,建立了以目标价值毁伤、编队损耗代价和时间消耗为性能指标的多无人作战飞机(UCAVs)多约束动态任务分配数学模型,采用改进的灰狼优化(GWO)算法对数学模型进行求解;... 通过分析无人作战飞机(UCAV)优势概率和任务联合威胁以及定义任务时间,建立了以目标价值毁伤、编队损耗代价和时间消耗为性能指标的多无人作战飞机(UCAVs)多约束动态任务分配数学模型,采用改进的灰狼优化(GWO)算法对数学模型进行求解;针对基本GWO算法求解早熟的缺点,给出了自适应调整策略和跳出局部最优策略,引入了二次曲线控制方法;对UCAVs动态协同任务分配特点,设计了目标任务序列编码方式,提出了基于自适应GWO(SAGWO)算法的UCAVs多目标动态任务分配方法。从静态与动态2种情况分别对该方法进行仿真验证;仿真结果表明,该方法是有效的,相比较于其他算法,其优化过程快速精准。 展开更多
关键词 多无人作战飞机(UCAVs) 动态协同任务分配 目标依赖矩阵 任务时间片 自适应灰狼优化(sagwo)算法
在线阅读 下载PDF
基于灰狼-鸟群算法的特征权重优化方法 被引量:1
2
作者 严爱军 严晶 《北京工业大学学报》 CAS CSCD 北大核心 2023年第10期1088-1098,共11页
针对特征权重难以准确量化的问题,提出一种基于灰狼优化(grey wolf optimizer, GWO)算法和鸟群算法(bird swarm algorithm, BSA)的混合算法,用于特征权重的寻优。首先,将Chebyshev映射、反向学习与精英策略用于混合算法的初始种群生成;... 针对特征权重难以准确量化的问题,提出一种基于灰狼优化(grey wolf optimizer, GWO)算法和鸟群算法(bird swarm algorithm, BSA)的混合算法,用于特征权重的寻优。首先,将Chebyshev映射、反向学习与精英策略用于混合算法的初始种群生成;其次,将改进后的GWO算法位置更新策略融入BSA的觅食行为中,得到一种新的局部搜索策略;然后,将BSA的警觉行为与飞行行为用作混合算法的全局搜索平衡策略,从而得到一种收敛的灰狼-鸟群算法(grey wolf and bird swarm algorithm, GWBSA),通过GWBSA的迭代寻优可获得各特征的权重值。利用标准测试函数和标准分类数据集进行了对比实验,与遗传算法、蚁狮算法等方法相比,GWBSA具有较快的收敛速度且不易陷入局部最优,可以提高模式分类问题的求解质量。 展开更多
关键词 特征权重 灰狼优化(grey wolf optimizer GWO)算法 鸟群算法(bird swarm algorithm BSA) 混合算法 问题求解 模式分类
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部