There exist a considerable variety of factors affecting the spectral emissivity of an object. The authors have designed an improved combined neural network emissivity model, which can identify the continuous spectral ...There exist a considerable variety of factors affecting the spectral emissivity of an object. The authors have designed an improved combined neural network emissivity model, which can identify the continuous spectral emissivity and true temperature of any object only based on the measured brightness temperature data. In order to improve the accuracy of approximate calculations, the local minimum problem in the algorithm must be solved. Therefore, the authors design an optimal algorithm, i.e. a hybrid chaotic optimal algorithm, in which the chaos is used to roughly seek for the parameters involved in the model, and then a second seek for them is performed using the steepest descent. The modelling of emissivity settles the problems in assumptive models in multi-spectral theory.展开更多
Cognitive emergency communication net-works can meet the requirements of large capac-ity,high density and low delay in emergency com-munications.This paper analyzes the properties of emergency users in cognitive emerg...Cognitive emergency communication net-works can meet the requirements of large capac-ity,high density and low delay in emergency com-munications.This paper analyzes the properties of emergency users in cognitive emergency communi-cation networks,designs a multi-objective optimiza-tion and proposes a novel multi-objective bacterial foraging optimization algorithm based on effective area(MOBFO-EA)to maximize the transmission rate while maximizing the lifecycle of the network.In the algorithm,the effective area is proposed to prevent the algorithm from falling into a local optimum,and the diversity and uniformity of the Pareto-optimal solu-tions distributed in the effective area are used to eval-uate the optimization algorithm.Then,the dynamic preservation is used to enhance the competitiveness of excellent individuals and the uniformity and diversity of the Pareto-optimal solutions in the effective area.Finally,the adaptive step size,adaptive moving direc-tion and inertial weight are used to shorten the search time of bacteria and accelerate the optimization con-vergence.The simulation results show that the pro-posed MOBFO-EA algorithm improves the efficiency of the Pareto-optimal solutions by approximately 55%compared with the MOPSO algorithm and by approx-imately 60%compared with the MOBFO algorithm and has the fastest and smoothest convergence.展开更多
The us of stochastic resonance (SR) can effectively achieve the detection of weak signal in white noise and colored noise. However, SR in chaotic interference is seldom involved. In view of the requirements for the ...The us of stochastic resonance (SR) can effectively achieve the detection of weak signal in white noise and colored noise. However, SR in chaotic interference is seldom involved. In view of the requirements for the detection of weak signal in the actual project and the relationship between the signal, chaotic interference, and nonlinear system in the bistable system, a self-adaptive SR system based on genetic algorithm is designed in this paper. It regards the output signal-to-noise ratio (SNR) as a fitness function and the system parameters are jointly encoded to gain optimal bistable system parameters, then the input signal is processed in the SR system with the optimal system parameters. Experimental results show that the system can keep the best state of SR under the condition of low input SNR, which ensures the effective detection and process of weak signal in low input SNR.展开更多
Multi-objective optimal dispatching schemes with intelligent algorithms are recognized as effective measures to promote the economics and environmental friendliness of microgrid applications.However,the low accuracy a...Multi-objective optimal dispatching schemes with intelligent algorithms are recognized as effective measures to promote the economics and environmental friendliness of microgrid applications.However,the low accuracy and poor convergence of these algorithms have been challenging for system operators.The bird swarm algorithm(BSA),a new bio-heuristic cluster intelligent algorithm,can potentially address these challenges;however,its computational iterative process may fall into a local optimum and result in premature convergence when optimizing small portions of multi-extremum functions.To analyze the impact of a multi-objective economic-environmental dispatching of a microgrid and overcome the aforementioned problems of the BSA,a self-adaptive levy flight strategy-based BSA(LF-BSA)was proposed.It can solve the dispatching problems of microgrid and enhance its dispatching convergence accuracy,stability,and speed,thereby improving its optimization performance.Six typical test functions were used to compare the LF-BSA with three commonly accepted algorithms to verify its excellence.Finally,a typical summer-time daily microgrid scenario under grid-connected operational conditions was simulated.The results proved the feasibility of the proposed LF-BSA,effectiveness of the multi-objective optimization,and necessity of using renewable energy and energy storage in microgrid dispatching optimization.展开更多
A new optimization method is proposed to realize the synthesis of duplexers.The traditional optimization method takes all the variables of the duplexer into account,resulting in too many variables to be optimized when...A new optimization method is proposed to realize the synthesis of duplexers.The traditional optimization method takes all the variables of the duplexer into account,resulting in too many variables to be optimized when the order of the duplexer is too high,so it is not easy to fall into the local solution.In order to solve this problem,a new optimization strategy is proposed in this paper,that is,two-channel filters are optimized separately,which can reduce the number of optimization variables and greatly reduce the probability of results falling into local solutions.The optimization method combines the self-adaptive differential evolution algorithm(SADE)with the Levenberg-Marquardt(LM)algorithm to get a global solution more easily and accelerate the optimization speed.To verify its practical value,we design a 5 G duplexer based on the proposed method.The duplexer has a large external coupling,and how to achieve a feed structure with a large coupling bandwidth at the source is also discussed.The experimental results show that the proposed optimization method can realize the synthesis of higher-order duplexers compared with the traditional methods.展开更多
针对股价预测中存在的不确定性、间断性、随机性和非线性等问题,提出一种TRSSA-ELM(Tent Random Walk Sparrow Optimization Algorithm-Extreme Learning Machine)股价预测模型。首先,采用自适应Tent混沌映射和随机游走策略对算法进行改...针对股价预测中存在的不确定性、间断性、随机性和非线性等问题,提出一种TRSSA-ELM(Tent Random Walk Sparrow Optimization Algorithm-Extreme Learning Machine)股价预测模型。首先,采用自适应Tent混沌映射和随机游走策略对算法进行改进,增强种群多样性和随机性,提高算法局部和全局的寻优能力。其次,使用单峰、多峰和固定维多峰测试函数对TRSSA(Tent Random Walk Sparrow Optimization Algorithm)性能进行了验证,相比于SSA(Sparrow Optimization Algorithm)、AO(Aquila Optimizer)、POA(Pelican Optimization Algorithm)和GWO(Grey Wolf Optimizer),TRSSA算法具有更好的收敛速度、精度和统计性质。最后,由于ELM(Extreme Learning Machine)模型随机生成权重和阈值,降低了预测精度和泛化能力,应用TRSSA算法优化ELM模型的权重和阈值,并用三安光电股票数据集对TRSSA-ELM模型进行了测试。实验结果表明,TRSSA-ELM模型相比于SSA-ELM、ELM、SVR(Support Vector Regression)和GBDT(Gradient Boosting Decision Tree),具有更好的预测精度和稳定性。展开更多
文摘There exist a considerable variety of factors affecting the spectral emissivity of an object. The authors have designed an improved combined neural network emissivity model, which can identify the continuous spectral emissivity and true temperature of any object only based on the measured brightness temperature data. In order to improve the accuracy of approximate calculations, the local minimum problem in the algorithm must be solved. Therefore, the authors design an optimal algorithm, i.e. a hybrid chaotic optimal algorithm, in which the chaos is used to roughly seek for the parameters involved in the model, and then a second seek for them is performed using the steepest descent. The modelling of emissivity settles the problems in assumptive models in multi-spectral theory.
基金National Natural Sci-ence Foundation of China(Grant Nos.61871241 and 61771263)Science and Technology Program of Nantong(Grant No.JC2019117).
文摘Cognitive emergency communication net-works can meet the requirements of large capac-ity,high density and low delay in emergency com-munications.This paper analyzes the properties of emergency users in cognitive emergency communi-cation networks,designs a multi-objective optimiza-tion and proposes a novel multi-objective bacterial foraging optimization algorithm based on effective area(MOBFO-EA)to maximize the transmission rate while maximizing the lifecycle of the network.In the algorithm,the effective area is proposed to prevent the algorithm from falling into a local optimum,and the diversity and uniformity of the Pareto-optimal solu-tions distributed in the effective area are used to eval-uate the optimization algorithm.Then,the dynamic preservation is used to enhance the competitiveness of excellent individuals and the uniformity and diversity of the Pareto-optimal solutions in the effective area.Finally,the adaptive step size,adaptive moving direc-tion and inertial weight are used to shorten the search time of bacteria and accelerate the optimization con-vergence.The simulation results show that the pro-posed MOBFO-EA algorithm improves the efficiency of the Pareto-optimal solutions by approximately 55%compared with the MOPSO algorithm and by approx-imately 60%compared with the MOBFO algorithm and has the fastest and smoothest convergence.
基金Project supported by the National Natural Science Foundation of China(Grant No.61271011)
文摘The us of stochastic resonance (SR) can effectively achieve the detection of weak signal in white noise and colored noise. However, SR in chaotic interference is seldom involved. In view of the requirements for the detection of weak signal in the actual project and the relationship between the signal, chaotic interference, and nonlinear system in the bistable system, a self-adaptive SR system based on genetic algorithm is designed in this paper. It regards the output signal-to-noise ratio (SNR) as a fitness function and the system parameters are jointly encoded to gain optimal bistable system parameters, then the input signal is processed in the SR system with the optimal system parameters. Experimental results show that the system can keep the best state of SR under the condition of low input SNR, which ensures the effective detection and process of weak signal in low input SNR.
基金supported by the National Natural Science Foundation of China (No. 52061635103)
文摘Multi-objective optimal dispatching schemes with intelligent algorithms are recognized as effective measures to promote the economics and environmental friendliness of microgrid applications.However,the low accuracy and poor convergence of these algorithms have been challenging for system operators.The bird swarm algorithm(BSA),a new bio-heuristic cluster intelligent algorithm,can potentially address these challenges;however,its computational iterative process may fall into a local optimum and result in premature convergence when optimizing small portions of multi-extremum functions.To analyze the impact of a multi-objective economic-environmental dispatching of a microgrid and overcome the aforementioned problems of the BSA,a self-adaptive levy flight strategy-based BSA(LF-BSA)was proposed.It can solve the dispatching problems of microgrid and enhance its dispatching convergence accuracy,stability,and speed,thereby improving its optimization performance.Six typical test functions were used to compare the LF-BSA with three commonly accepted algorithms to verify its excellence.Finally,a typical summer-time daily microgrid scenario under grid-connected operational conditions was simulated.The results proved the feasibility of the proposed LF-BSA,effectiveness of the multi-objective optimization,and necessity of using renewable energy and energy storage in microgrid dispatching optimization.
基金supported by the National Natural Science Foundation of China(NSFC)under project no.62071357the Fundamental Research Funds for the Central Unive rsities。
文摘A new optimization method is proposed to realize the synthesis of duplexers.The traditional optimization method takes all the variables of the duplexer into account,resulting in too many variables to be optimized when the order of the duplexer is too high,so it is not easy to fall into the local solution.In order to solve this problem,a new optimization strategy is proposed in this paper,that is,two-channel filters are optimized separately,which can reduce the number of optimization variables and greatly reduce the probability of results falling into local solutions.The optimization method combines the self-adaptive differential evolution algorithm(SADE)with the Levenberg-Marquardt(LM)algorithm to get a global solution more easily and accelerate the optimization speed.To verify its practical value,we design a 5 G duplexer based on the proposed method.The duplexer has a large external coupling,and how to achieve a feed structure with a large coupling bandwidth at the source is also discussed.The experimental results show that the proposed optimization method can realize the synthesis of higher-order duplexers compared with the traditional methods.