Naturally degradable capsule provides a platform for sustained fragrance release.However,practical challenges such as low encapsulation efficiency and difficulty in sustained release are still limited in using fragran...Naturally degradable capsule provides a platform for sustained fragrance release.However,practical challenges such as low encapsulation efficiency and difficulty in sustained release are still limited in using fragranceloaded capsules.In this work,the natural materials sodium alginate and gelatine are dissolved and act as the aqueous phase,lavender is dissolved in caprylic/capric triglyceride(GTCC)as the oil phase,and SiO_(2) nanoparticles with neutralwettability as a solid emulsifier to form O/W Pickering emulsions simultaneously.Finally,multi-core capsules are prepared using the drop injection method with emulsions as templates.The results show that the capsules have been successfully prepared with a spherical morphology and multi-core structure,and the encapsulation rate of multi-core capsules can reach up to 99.6%.In addition,the multi-core capsules possess desirable sustained release performance,the cumulative sustained release rate of fragrance at 25℃over 49 days is only 32.5%.It is attributed to the significant protection of multi-core structure,Pickering emulsion nanoparticle membranes,and hydrogel network shell for encapsulated fragrance.This study is designed to deliver a new strategy for using sustained-release technology with fragrance in food,cosmetics,textiles,and other fields.展开更多
Finding sustainable energy resources is essential to face the increasing energy demand.Trees are an important part of ancient architecture but are becoming rare in urban areas.Trees can control and tune the pedestrian...Finding sustainable energy resources is essential to face the increasing energy demand.Trees are an important part of ancient architecture but are becoming rare in urban areas.Trees can control and tune the pedestrian-level wind velocity and thermal condition.In this study,a numerical investigation is employed to assess the role of trees planted in the windward direction of the building complex on the thermal and pedestrian wind velocity conditions around/inside a pre-education building located in the center of the complex.Compared to the previous studies(which considered only outside buildings),this work considers the effects of trees on microclimate change both inside/outside buildings.Effects of different parameters including the leaf area density and number of trees,number of rows,far-field velocity magnitude,and thermal condition around the main building are assessed.The results show that the flow velocity in the spacing between the first-row buildings is reduced by 30%-40% when the one-row trees with 2 m height are planted 15 m farther than the buildings.Furthermore,two rows of trees are more effective in higher velocities and reduce the maximum velocity by about 50%.The investigation shows that trees also could reduce the temperature by about 1℃around the building.展开更多
文摘Naturally degradable capsule provides a platform for sustained fragrance release.However,practical challenges such as low encapsulation efficiency and difficulty in sustained release are still limited in using fragranceloaded capsules.In this work,the natural materials sodium alginate and gelatine are dissolved and act as the aqueous phase,lavender is dissolved in caprylic/capric triglyceride(GTCC)as the oil phase,and SiO_(2) nanoparticles with neutralwettability as a solid emulsifier to form O/W Pickering emulsions simultaneously.Finally,multi-core capsules are prepared using the drop injection method with emulsions as templates.The results show that the capsules have been successfully prepared with a spherical morphology and multi-core structure,and the encapsulation rate of multi-core capsules can reach up to 99.6%.In addition,the multi-core capsules possess desirable sustained release performance,the cumulative sustained release rate of fragrance at 25℃over 49 days is only 32.5%.It is attributed to the significant protection of multi-core structure,Pickering emulsion nanoparticle membranes,and hydrogel network shell for encapsulated fragrance.This study is designed to deliver a new strategy for using sustained-release technology with fragrance in food,cosmetics,textiles,and other fields.
文摘Finding sustainable energy resources is essential to face the increasing energy demand.Trees are an important part of ancient architecture but are becoming rare in urban areas.Trees can control and tune the pedestrian-level wind velocity and thermal condition.In this study,a numerical investigation is employed to assess the role of trees planted in the windward direction of the building complex on the thermal and pedestrian wind velocity conditions around/inside a pre-education building located in the center of the complex.Compared to the previous studies(which considered only outside buildings),this work considers the effects of trees on microclimate change both inside/outside buildings.Effects of different parameters including the leaf area density and number of trees,number of rows,far-field velocity magnitude,and thermal condition around the main building are assessed.The results show that the flow velocity in the spacing between the first-row buildings is reduced by 30%-40% when the one-row trees with 2 m height are planted 15 m farther than the buildings.Furthermore,two rows of trees are more effective in higher velocities and reduce the maximum velocity by about 50%.The investigation shows that trees also could reduce the temperature by about 1℃around the building.