期刊文献+
共找到375篇文章
< 1 2 19 >
每页显示 20 50 100
基于BP典型相关分析和多变量SOM聚类的区划算法研究
1
作者 吴香华 金芯如 +2 位作者 黎亚少 任苗苗 王巍巍 《南京信息工程大学学报》 北大核心 2025年第3期363-373,共11页
针对目前气候区划变量较少、信息利用不充分、较少考虑气候变化影响等问题,基于机器学习和现代统计方法,提出一种数据驱动的区划算法.首先,基于Mann-Kendall检验和滑动t检验计算主变量的突变点,把研究时期进行分段;然后,基于BP典型相关... 针对目前气候区划变量较少、信息利用不充分、较少考虑气候变化影响等问题,基于机器学习和现代统计方法,提出一种数据驱动的区划算法.首先,基于Mann-Kendall检验和滑动t检验计算主变量的突变点,把研究时期进行分段;然后,基于BP典型相关选取协变量,并建立多变量SOM聚类算法,实现不同阶段的气候区划;最后,结合气候区概况来分析区划结果的实际意义,以及气候变化对气候区划的影响.实验结果表明:所提的区划算法有别于主变量的等值线分区以及人为确定阈值,而是根据SOM聚类,由数据驱动来确定区域个数以及分区,数据利用率高,区划过程更加客观合理;无需在区划过程中考虑气候背景,而是在算法过程中包含多层协变量和气候变化的影响,能够有效提高区划效率和可靠性. 展开更多
关键词 区划 MANN-KENDALL检验 BP典型相关分析 多变量som聚类
在线阅读 下载PDF
基于改进SOM网络的聚类算法
2
作者 蒋锐 范姝文 +1 位作者 王小明 徐友云 《计算机科学》 北大核心 2025年第8期162-170,共9页
在自组织映射(Self-organizing Map,SOM)模型的训练过程中,不同类数据对权重矩阵的更新有不同作用,某一类数据对权重矩阵的更新会对其他类获胜神经元特征向量产生偏离其数据特征的影响,从而降低算法聚类精度。针对以上问题,提出一种改... 在自组织映射(Self-organizing Map,SOM)模型的训练过程中,不同类数据对权重矩阵的更新有不同作用,某一类数据对权重矩阵的更新会对其他类获胜神经元特征向量产生偏离其数据特征的影响,从而降低算法聚类精度。针对以上问题,提出一种改进的基于置信度SOM模型(Improved Confidence-based SOM Model,icSOM)。样本数据首先由K-means算法初步分类,为模型训练提供更多的数据信息;然后将预分类后的数据分别训练相互独立的SOM模型,以消除不同类之间的影响;最后在传统SOM模型基础上提出置信度矩阵概念,通过综合判断获胜神经元的置信度及其与输入数据间的欧氏距离最终得到置信神经元,根据置信神经元所属类别给数据分配聚类标签。在鸢尾花数据集(Iris)及葡萄酒数据集(Wine)上利用icSOM进行聚类分析,实验结果表明,所提算法可以更好地处理样本数据,取得了较好的聚类效果。 展开更多
关键词 机器学习 无监督学习 聚类 自组织特征映射神经网络
在线阅读 下载PDF
基于mRMR-SOM的异步电机轴承故障诊断研究
3
作者 刘文 周智勇 蔡巍 《机电工程》 北大核心 2024年第1期90-98,共9页
针对异步电机轴承故障诊断问题,提出了一种融合最大相关最小冗余特征选择算法(mRMR)和自组织映射神经网络(SOM)的故障诊断方法,并将其应用于轴承故障诊断的不同阶段。首先,在实验室环境下搭建了异步电机故障诊断试验平台,在不同电机状... 针对异步电机轴承故障诊断问题,提出了一种融合最大相关最小冗余特征选择算法(mRMR)和自组织映射神经网络(SOM)的故障诊断方法,并将其应用于轴承故障诊断的不同阶段。首先,在实验室环境下搭建了异步电机故障诊断试验平台,在不同电机状态下分别采集振动、电流和电压信号,利用统计学方法获取了高维混合特征集;然后,以互信息为背景,利用mRMR根据特征与状态标签间的相关性和特征间的冗余性,筛选了具备强区分能力的特征,以避免计算冗余和后验诊断性能下降;最后,采用SOM对异步电机健康和轴承故障状态进行了分类识别,验证了SOM对异步电机轴承故障诊断的有效性,以及mRMR对故障诊断结果的影响。研究结果表明:基于mRMR-SOM的异步电机轴承故障诊断方法能够准确地区分健康和故障状态,测试集分类准确率达到89%;使用mRMR特征筛选能够将154维特征降低至17维,缩短23.5%的网络收敛时间,并将分类准确率由89%提升至98%;试验结果验证了基于mRMR-SOM的异步电机轴承故障诊断方法对于异步电机轴承故障诊断问题的有效性,且证实其具备良好的诊断效果。 展开更多
关键词 自组织映射神经网络 最大相关最小冗余特征选择算法 互信息 特征降维 特征选择 神经网络算法 U矩阵
在线阅读 下载PDF
基于SOM-FDA利用XRF对药品铝塑包装片的分类 被引量:2
4
作者 姜红 康瑞雪 郝小辉 《浙江大学学报(理学版)》 CAS CSCD 北大核心 2024年第6期747-752,768,共7页
建立了一种对药品铝塑包装片进行快速分类的方法。利用能量色散型X射线荧光光谱(XRF)仪,对47种不同的药品铝塑包装片样品进行了检验,结合自组织映射(self organizing map,SOM)神经网络聚类,通过最大相关性最小冗余(maximum relevance mi... 建立了一种对药品铝塑包装片进行快速分类的方法。利用能量色散型X射线荧光光谱(XRF)仪,对47种不同的药品铝塑包装片样品进行了检验,结合自组织映射(self organizing map,SOM)神经网络聚类,通过最大相关性最小冗余(maximum relevance minimum redundancy,MRMR)算法对元素重要性进行排序,并利用最近邻(K-nearest neighbor,KNN)分类器处理样品数据。依据样品中所含元素的种类及质量分数的不同,对药品铝塑包装片进行区分。SOM神经网络聚类的结果为9类,KNN分类器的准确率为97.87%。X射线荧光光谱法操作简便快速、无损检材、灵敏度高。建立的分类模型科学准确,可为公安机关大规模筛选、确定侦查方向、缩短侦查时间提供帮助。 展开更多
关键词 X射线荧光光谱法 药品铝塑包装片 自组织映射神经网络 最近邻分类器 分类
在线阅读 下载PDF
融合相似预报方法在陇东南短期强降水预报中的应用 被引量:1
5
作者 黄晓远 李旭 +2 位作者 杜梦莹 叶培龙 李艳 《高原气象》 北大核心 2025年第1期214-223,共10页
基于逐步过滤相似法和自组织映射(SOM)神经网络方法,提出了一种融合相似预报方法。利用ECMWF模式预报产品、ERA5再分析资料和地面气象台站观测数据,使用该方法对2021-2022年陇东南地区开展了时效为72 h的强降水预报试验,并对预报效果进... 基于逐步过滤相似法和自组织映射(SOM)神经网络方法,提出了一种融合相似预报方法。利用ECMWF模式预报产品、ERA5再分析资料和地面气象台站观测数据,使用该方法对2021-2022年陇东南地区开展了时效为72 h的强降水预报试验,并对预报效果进行了检验。结果表明:(1)融合相似预报方法的TS评分处于4.5%~9.1%之间,与ECMWF模式预报结果相比表现出一定的优势。随着预报时效的增长,强降水预报的TS评分呈现减小的趋势,其在08:00(北京时,下同)起报的TS评分相对较高。(2)相比于单独使用逐步过滤相似预报,融合相似预报方法的准确性有所提升,并能在一定程度上降低空报率。其中08:00起报和20:00起报的TS评分提高了1.31%和0.63%,而FAR同时下降了2.39%和1.25%。 展开更多
关键词 强降水 短期预报 相似预报 逐步过滤相似 自组织映射(som)
在线阅读 下载PDF
新疆自然保护综合地理区划 被引量:2
6
作者 王锐锋 朱舒欣 +3 位作者 郭子良 林海 王清春 崔国发 《生态学报》 北大核心 2025年第2期539-553,共15页
综合地理区划全面地反映了自然界的地域分异,但当前研究仍缺乏结合生物、非生物以及地貌等多重因素的综合考量。目前以国家公园为主体的自然保护地体系建设已卓有成效,亟需从区域角度提出兼顾自然地理特征和生物分异格局的区划方案。以... 综合地理区划全面地反映了自然界的地域分异,但当前研究仍缺乏结合生物、非生物以及地貌等多重因素的综合考量。目前以国家公园为主体的自然保护地体系建设已卓有成效,亟需从区域角度提出兼顾自然地理特征和生物分异格局的区划方案。以综合性、地带性与非地带性相结合、生物因子与非生物因子相结合为区划原则,采用热量、水分、土壤、植被和动物地理分布等5项指标,通过自组织特征映射模型(SOFM)综合聚类,以聚类结果为基础,结合山系山脉界线及地貌完整性,按照“自上而下”的原则划分区划单元,根据新疆全域野外科学考察结果和卫星遥感三维影像加以修正,同时充分考虑新疆自然保护地的分布情况,保证了区划的客观性、科学性、系统性、准确性和适用性。新疆自然保护综合地理区划方案共分为四级,包括了5个自然保护地理大区(一级区)、11个自然保护地理地区(二级区)、21个自然保护地理亚地区(三级区)和48个自然保护地理小区(四级区),其中,一级区划与新疆“三山夹两盆”的地形分布格局相协调,划分为阿尔泰山Ⅰ、准噶尔盆地-北塔山Ⅱ、天山山地Ⅲ、塔里木盆地-吐哈盆地Ⅳ和昆仑山-阿尔金山Ⅴ。研究梳理了自然保护地理单元内的自然保护地及主要保护对象等,该区划方案与新疆自然保护地分布较为吻合,绝大多数自然保护地都未跨越自然保护地理亚地区,各自然保护地理单元内的物种在地理分布上也相对不隔离,同一自然保护地理单元内的自然保护地可组成以保护关键种、伞护种或旗舰种为目标的自然保护地群,以此构建区域自然保护地网络,提高生态系统连通性。该区划方案对新疆生物多样性保护、以国家公园为主体的自然保护地体系建设和生境廊道构建具有重要的指导作用,同时也为其他省份乃至全国的自然保护综合地理区划提供理论依据和参考借鉴。 展开更多
关键词 新疆 自然保护 地理区划 自组织特征映射模型(SOFM)
在线阅读 下载PDF
基于主成分和SOM聚类分析的高粱品种萌发期抗旱性鉴定与分类 被引量:59
7
作者 王艺陶 周宇飞 +6 位作者 李丰先 依兵 白薇 闫彤 许文娟 高明超 黄瑞冬 《作物学报》 CAS CSCD 北大核心 2014年第1期110-121,共12页
采用人工气候箱内培养皿培养,PEG-6000溶液模拟干旱胁迫环境,在萌发期以80、120、150和175 g L–1PEG-6000水溶液处理31个高粱品种,旨在根据高粱品种萌发期对不同干旱胁迫程度的响应,筛选出具有抗旱能力的高粱品种并探讨高粱萌发期抗旱... 采用人工气候箱内培养皿培养,PEG-6000溶液模拟干旱胁迫环境,在萌发期以80、120、150和175 g L–1PEG-6000水溶液处理31个高粱品种,旨在根据高粱品种萌发期对不同干旱胁迫程度的响应,筛选出具有抗旱能力的高粱品种并探讨高粱萌发期抗旱性鉴定的方法。通过主成分分析法(PCA)和神经网络自组织映射(SOM)聚类分析法对各高粱品种进行抗旱性综合分析与评定。PCA结果表明,相对芽长、相对根长和相对萌发抗旱指数载荷量最大,将其作为萌发期高粱抗旱性筛选的主要评价指标,并对31个高粱品种抗旱性排序。通过SOM聚类分析将31个高粱品种按抗旱性强弱分为5类,吉杂305等4个品种为高度抗旱品种,HL5等4个品种为抗旱品种,辽杂10号等8个品种为中等抗旱品种,锦杂103等7个品种为干旱敏感品种,锦杂93等8个品种为高度干旱敏感品种。研究认为,相对芽长、相对根长和相对萌发抗旱指数等可以作为高粱品种抗旱性鉴定的重要指标;SOM聚类分析可作为品种抗旱性分类的重要方法。 展开更多
关键词 高粱 抗旱性 主成分分析 som聚类分析
在线阅读 下载PDF
面向全场景安全的储能投资高效规划方法 被引量:1
8
作者 程曹阳 杨知方 +2 位作者 余娟 王新刚 周专 《电工技术学报》 北大核心 2025年第1期64-79,共16页
随着风电、光伏等新能源渗透率的不断提高,系统随机性与波动性的不断增强,科学合理地规划储能被认为是缓解新能源不确定性、提高电力系统安全性与灵活性的有效手段。然而,现有规划方法为了保证一定的计算效率,通常仅选取少量关键场景用... 随着风电、光伏等新能源渗透率的不断提高,系统随机性与波动性的不断增强,科学合理地规划储能被认为是缓解新能源不确定性、提高电力系统安全性与灵活性的有效手段。然而,现有规划方法为了保证一定的计算效率,通常仅选取少量关键场景用以制定储能规划方案,无法确保其在全场景下的安全性,倘若对于全场景进行安全校核,又会因为模型规模大而导致求解时间在规划层面都难以接受。为此,该文提出一种面向全场景安全的储能投资高效规划方法。首先,针对现有规划方法存在的安全风险,提出一种面向全场景安全的闭环储能规划框架,以及基于全场景集排序结果引导的场景更新策略,可以保证规划方案在全场景下的安全性,同时兼顾一定的计算效率;其次,提出了一种基于自组织映射(SOM)神经网络及场景关键指标排序的初始关键场景集生成方法,该方法无需预先给定聚类数量,能够较准确地反映全场景的关键信息,进一步提高了计算效率;最后,基于IEEE 30节点系统以及国内某省实际341节点系统进行算例验证,结果表明所提方法可以在保障规划方案在全场景下的安全性与最优性的基础上,尽可能减少需考虑的场景数量,提高求解效率。 展开更多
关键词 储能规划 多场景规划 场景筛选 安全校核 自组织映射神经网络
在线阅读 下载PDF
基于改进的SOM神经网络在水质评价分析中的应用 被引量:20
9
作者 雷璐宁 石为人 范敏 《仪器仪表学报》 EI CAS CSCD 北大核心 2009年第11期2379-2383,共5页
随着人们对水资源环境的日益重视,各种水质评价方法层出不穷。传统的水质评价方法多采用精确的数学模型进行描述,无法很好的反映水环境中存在的复杂非线性关系,从而影响整体评价结果。因此,本文提出采用一种改进的自组织特征映射神经网... 随着人们对水资源环境的日益重视,各种水质评价方法层出不穷。传统的水质评价方法多采用精确的数学模型进行描述,无法很好的反映水环境中存在的复杂非线性关系,从而影响整体评价结果。因此,本文提出采用一种改进的自组织特征映射神经网络(SOM)方法来进行水质评价,利用SOM神经网络能在无监督、无先验知识的状态下对样本进行自组织、自学习,实现对样本的评价与分类这一特点。通过引入主成分分析,解决SOM神经网络处理高维和相关性强的指标时出现的问题,提高网络收敛速度和聚类准确性。仿真结果表明:改进后的SOM神经网络能够直观准确地评价水体质量,反映水质整体状况。 展开更多
关键词 水质评价 自组织特征映射 som神经网络 主成分分析
在线阅读 下载PDF
SOM神经网络和C-均值法在负荷分类中的应用 被引量:15
10
作者 王文生 王进 王科文 《电力系统及其自动化学报》 CSCD 北大核心 2011年第4期36-39,共4页
负荷时变性和分散性已经成为制约负荷模型推广应用的主要因素,而负荷特性分类则是解决这个问题的有效途径。文中提出基于SOM神经网络的C-均值聚类算法的新的负荷分类方法:以负荷模型参数作为负荷动态特性分类特征向量,应用SOM神经网络... 负荷时变性和分散性已经成为制约负荷模型推广应用的主要因素,而负荷特性分类则是解决这个问题的有效途径。文中提出基于SOM神经网络的C-均值聚类算法的新的负荷分类方法:以负荷模型参数作为负荷动态特性分类特征向量,应用SOM神经网络对初始训练样本进行分类,将获得的聚类数目和各类中心点作为C-均值算法的初始输入进一步聚类。最后通过动模实验的分类结果表明该方法可自动获取分类数,应用于负荷特性分类研究中具有较强的实用性和有效性。 展开更多
关键词 电力系统 负荷建模 负荷特性分类 自组织特征映射 som神经网络 C-均值法
在线阅读 下载PDF
SOM神经网络算法的研究与进展 被引量:80
11
作者 杨占华 杨燕 《计算机工程》 EI CAS CSCD 北大核心 2006年第16期201-202,228,共3页
自组织映射(Self-organizingMaps,SOM)算法是一种无导师学习方法,具有良好的自组织、可视化等特性,已经得到了广泛的应用和研究。该文系统地介绍了SOM算法的产生背景、基本算法。同时对SOM算法的参数设置和其不足进行了分析。重点归纳... 自组织映射(Self-organizingMaps,SOM)算法是一种无导师学习方法,具有良好的自组织、可视化等特性,已经得到了广泛的应用和研究。该文系统地介绍了SOM算法的产生背景、基本算法。同时对SOM算法的参数设置和其不足进行了分析。重点归纳了其发展过程中的各种改进算法,并对其研究热点及应用领域作了简要的综述,最后展望了该算法的发展方向。 展开更多
关键词 神经网络 自组织映射(som) 改进算法 无导师学习 神经元
在线阅读 下载PDF
有监督SOM神经网络在入侵检测中的应用 被引量:15
12
作者 赵建华 李伟华 《计算机工程》 CAS CSCD 2012年第12期110-111,114,共3页
为提高自组织特征映射(SOM)神经网络的分类性能,提出一种有监督SOM神经网络(SSOM)。在输入层和竞争层的基础上增加输出层,根据输入样本的不同预测类别,选取不同的公式调整权值,并训练网络。通过2个权值的组合,实现对样本类别的回归和统... 为提高自组织特征映射(SOM)神经网络的分类性能,提出一种有监督SOM神经网络(SSOM)。在输入层和竞争层的基础上增加输出层,根据输入样本的不同预测类别,选取不同的公式调整权值,并训练网络。通过2个权值的组合,实现对样本类别的回归和统计。基于KDD CUP99入侵检测数据集的实验结果表明,与其他SOM网络相比,SSOM具有更好的分类性能和更高的入侵检测率。 展开更多
关键词 自组织特征映射 神经网络 有监督自组织特征映射 机器学习 回归 入侵检测
在线阅读 下载PDF
SOM神经网络改进及在遥感图像分类中的应用 被引量:18
13
作者 任军号 吉沛琦 耿跃 《计算机应用研究》 CSCD 北大核心 2011年第3期1170-1172,1182,共4页
针对自组织特征神经网络自身算法的特点和缺陷,采用遗传算法对网络进行改进,形成了基于遗传算法的自组织特征神经网络,并从输入向量、竞争层神经元数量设置和初始权向量设定三方面,结合遥感图像的特性对自组织特征映射网络遥感图像分类... 针对自组织特征神经网络自身算法的特点和缺陷,采用遗传算法对网络进行改进,形成了基于遗传算法的自组织特征神经网络,并从输入向量、竞争层神经元数量设置和初始权向量设定三方面,结合遥感图像的特性对自组织特征映射网络遥感图像分类的方法进行了改进。将该方法应用于选择西安地区的ETM+卫星遥感图像进行分类实验。结果表明,基于遗传算法的自组织特征映射网络使得遥感图像的分类精度更高,且该算法实现简单,具有一定的工程应用价值。 展开更多
关键词 分类 自组织特征映射 神经网络 遗传算法 遥感图像
在线阅读 下载PDF
SOM和Elman神经网络在整流器故障诊断的应用 被引量:6
14
作者 康洪铭 李光升 +1 位作者 谢永成 魏宁 《计算机工程与应用》 CSCD 2014年第11期267-270,共4页
针对装甲车辆电源系统整流器内部二极管的断路和短路故障,提出了一种基于SOM和Elman神经网络相结合的诊断方法。通过建立整流器的仿真模型,利用快速傅里叶变换(FFT)提取各故障模式的谐波次数和幅值,并用SOM网络进行模式分类,由于各模式... 针对装甲车辆电源系统整流器内部二极管的断路和短路故障,提出了一种基于SOM和Elman神经网络相结合的诊断方法。通过建立整流器的仿真模型,利用快速傅里叶变换(FFT)提取各故障模式的谐波次数和幅值,并用SOM网络进行模式分类,由于各模式下具体故障类型存在相位差,通过采样其周期内的电压值,再利用Elman网络可以识别具体故障。从仿真结果来看,实现了整流器的模式分类和故障识别,验证了该方法的可行和正确性。 展开更多
关键词 整流器 自组织映射(som) ELMAN 故障诊断
在线阅读 下载PDF
一种基于SOM和K-means的文档聚类算法 被引量:16
15
作者 杨占华 杨燕 《计算机应用研究》 CSCD 北大核心 2006年第5期73-74,79,共3页
提出了一种把自组织特征映射SOM和K-means算法结合的聚类组合算法。先用SOM对文档聚类,然后以SOM的输出权值初始化K-means的聚类中心,再用K-means算法对文档聚类。实验结果表明,该聚类组合算法能改进文档聚类的性能。
关键词 自组织特征映射 K-MEANS 聚类 组合方法 文档聚类
在线阅读 下载PDF
基于SOM和HMM结合的刀具磨损状态监测研究 被引量:6
16
作者 吕俊杰 王杰 +1 位作者 王玫 吴越 《中国机械工程》 EI CAS CSCD 北大核心 2010年第13期1531-1535,共5页
针对端面铣刀磨损状态的识别问题,提出了基于自组织特征映射神经网络和隐马尔可夫模型结合的方法。该方法对铣削力信号进行预处理和相关特征提取,用自组织特征映射对信号特征矢量进行量化编码,所得码本作为隐马尔可夫模型的输入向量,分... 针对端面铣刀磨损状态的识别问题,提出了基于自组织特征映射神经网络和隐马尔可夫模型结合的方法。该方法对铣削力信号进行预处理和相关特征提取,用自组织特征映射对信号特征矢量进行量化编码,所得码本作为隐马尔可夫模型的输入向量,分别训练三个不同磨损阶段的隐马尔可夫模型来对未知的刀具磨损状态进行监测与识别。实验结果表明,该方法能够对刀具磨损状态进行准确的识别,对自动化生产具有现实意义。 展开更多
关键词 隐马尔可夫模型(HMM) 自组织特征映射(som) 刀具磨损状态 铣削力
在线阅读 下载PDF
基于SOM的散乱点云法矢计算 被引量:7
17
作者 曾锋 钟治初 +1 位作者 杨通 姚山 《计算机工程》 CAS CSCD 2012年第8期287-290,共4页
点云法矢计算对点云分布密度较敏感,而且在尖锐边界处计算误差较大。为此,提出一种基于自组织神经网络(SOM)的散乱点云法矢计算方法。为利用散乱点云拓扑和几何信息计算法矢,以球面SOM学习点云拓扑结构,得到被测曲面的三角网格近似图,... 点云法矢计算对点云分布密度较敏感,而且在尖锐边界处计算误差较大。为此,提出一种基于自组织神经网络(SOM)的散乱点云法矢计算方法。为利用散乱点云拓扑和几何信息计算法矢,以球面SOM学习点云拓扑结构,得到被测曲面的三角网格近似图,使用三角网格构成的连通图组织点云数据结构,通过k-近邻点拟合微切平面,从而计算点云法矢,并调整点云法矢指向。实验结果表明,该方法具有较高的计算精度,法矢误差在0.08以内,标准差为0.009。 展开更多
关键词 散乱点 拓扑信息 自组织神经网络 法矢计算 逆向工程
在线阅读 下载PDF
基于SOM-RBF算法的瓦斯涌出量动态预测模型研究 被引量:10
18
作者 付华 刘汀 +2 位作者 张胜强 赵东红 丁冠西 《传感技术学报》 CAS CSCD 北大核心 2015年第8期1255-1261,共7页
针对煤矿瓦斯涌出量的多影响因素预测问题,以多传感器的瓦斯监测系统采集处理后的数据作为样本,提出了一种自组织特征映射神经网络(Self-organizing Feature Maps,SOM)与多变量的径向基函数(Radial Basis Function,RBF)结合的组合人工... 针对煤矿瓦斯涌出量的多影响因素预测问题,以多传感器的瓦斯监测系统采集处理后的数据作为样本,提出了一种自组织特征映射神经网络(Self-organizing Feature Maps,SOM)与多变量的径向基函数(Radial Basis Function,RBF)结合的组合人工神经网络的模型动态预测新方法。采用先聚类、再分类建模和预测的方法,解决了由于训练样本有限和训练样本点分散所导致的预测精度降低的问题,并通过矿井监测到的各项历史数据进行试验。结果表明,与其他预测模型相比较,该模型的预测精度更高,泛化能力更强。预测平均相对误差为2.16%,均相对变动值ARV为0.005 9,均方根误差RMSE为0.131 1,有效地实现了对煤矿绝对瓦斯涌出量的动态预测,有较高的实用价值。 展开更多
关键词 多传感器 瓦斯涌出量 自组织特征映射神经网络 径向基函数 动态预测
在线阅读 下载PDF
一种基于SOM和PAM的聚类算法 被引量:8
19
作者 张钊 王锁柱 张雨 《计算机应用》 CSCD 北大核心 2007年第6期1400-1402,共3页
提出了一种基于自组织映射(SOM)算法和围绕中心点的划分(PAM)算法相结合的SOM-PAM聚类算法。该算法首先利用SOM算法对数据集进行“粗聚类”并得到簇数k;然后,根据簇数k再利用PAM算法对“粗聚类”结果进行聚类并得到最终聚类结果。通过... 提出了一种基于自组织映射(SOM)算法和围绕中心点的划分(PAM)算法相结合的SOM-PAM聚类算法。该算法首先利用SOM算法对数据集进行“粗聚类”并得到簇数k;然后,根据簇数k再利用PAM算法对“粗聚类”结果进行聚类并得到最终聚类结果。通过实验表明,SOM-PAM算法具有比SOM算法更高的聚类效率和更好的聚类质量。 展开更多
关键词 聚类 自组织映射算法 围绕中心点的划分算法
在线阅读 下载PDF
TGSOM:一种用于数据聚类的动态自组织映射神经网络 被引量:28
20
作者 王莉 王正欧 《电子与信息学报》 EI CSCD 北大核心 2003年第3期313-319,共7页
针对传统Kohonen自组织特征映射(SOFM)神经网络模型结构需预先指定的限制,提出一种新的树形动态自组织映射(TGSOM)神经网络,当用于数据挖掘时该网络以其生成速度快可视性好具有显著优越性。该文详尽描述了该网络模型的生成算法,研究了... 针对传统Kohonen自组织特征映射(SOFM)神经网络模型结构需预先指定的限制,提出一种新的树形动态自组织映射(TGSOM)神经网络,当用于数据挖掘时该网络以其生成速度快可视性好具有显著优越性。该文详尽描述了该网络模型的生成算法,研究了算法中扩展因子的作用。扩展因子与训练样本数据的维数无关,其作用是控制网络的生长,扩展因子可以反映数据聚类的精度,即扩展因子值的大小与聚类精度的高低成正比。在聚类的不同阶段使用大小不等的扩展因子还可以实现层次聚类。 展开更多
关键词 TGsom 神经网络 数据聚类 数据挖掘 自组织特征映射 树形动态自组织映射
在线阅读 下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部