采用人工气候箱内培养皿培养,PEG-6000溶液模拟干旱胁迫环境,在萌发期以80、120、150和175 g L–1PEG-6000水溶液处理31个高粱品种,旨在根据高粱品种萌发期对不同干旱胁迫程度的响应,筛选出具有抗旱能力的高粱品种并探讨高粱萌发期抗旱...采用人工气候箱内培养皿培养,PEG-6000溶液模拟干旱胁迫环境,在萌发期以80、120、150和175 g L–1PEG-6000水溶液处理31个高粱品种,旨在根据高粱品种萌发期对不同干旱胁迫程度的响应,筛选出具有抗旱能力的高粱品种并探讨高粱萌发期抗旱性鉴定的方法。通过主成分分析法(PCA)和神经网络自组织映射(SOM)聚类分析法对各高粱品种进行抗旱性综合分析与评定。PCA结果表明,相对芽长、相对根长和相对萌发抗旱指数载荷量最大,将其作为萌发期高粱抗旱性筛选的主要评价指标,并对31个高粱品种抗旱性排序。通过SOM聚类分析将31个高粱品种按抗旱性强弱分为5类,吉杂305等4个品种为高度抗旱品种,HL5等4个品种为抗旱品种,辽杂10号等8个品种为中等抗旱品种,锦杂103等7个品种为干旱敏感品种,锦杂93等8个品种为高度干旱敏感品种。研究认为,相对芽长、相对根长和相对萌发抗旱指数等可以作为高粱品种抗旱性鉴定的重要指标;SOM聚类分析可作为品种抗旱性分类的重要方法。展开更多
文摘在自组织映射(Self-organizing Map,SOM)模型的训练过程中,不同类数据对权重矩阵的更新有不同作用,某一类数据对权重矩阵的更新会对其他类获胜神经元特征向量产生偏离其数据特征的影响,从而降低算法聚类精度。针对以上问题,提出一种改进的基于置信度SOM模型(Improved Confidence-based SOM Model,icSOM)。样本数据首先由K-means算法初步分类,为模型训练提供更多的数据信息;然后将预分类后的数据分别训练相互独立的SOM模型,以消除不同类之间的影响;最后在传统SOM模型基础上提出置信度矩阵概念,通过综合判断获胜神经元的置信度及其与输入数据间的欧氏距离最终得到置信神经元,根据置信神经元所属类别给数据分配聚类标签。在鸢尾花数据集(Iris)及葡萄酒数据集(Wine)上利用icSOM进行聚类分析,实验结果表明,所提算法可以更好地处理样本数据,取得了较好的聚类效果。
文摘采用人工气候箱内培养皿培养,PEG-6000溶液模拟干旱胁迫环境,在萌发期以80、120、150和175 g L–1PEG-6000水溶液处理31个高粱品种,旨在根据高粱品种萌发期对不同干旱胁迫程度的响应,筛选出具有抗旱能力的高粱品种并探讨高粱萌发期抗旱性鉴定的方法。通过主成分分析法(PCA)和神经网络自组织映射(SOM)聚类分析法对各高粱品种进行抗旱性综合分析与评定。PCA结果表明,相对芽长、相对根长和相对萌发抗旱指数载荷量最大,将其作为萌发期高粱抗旱性筛选的主要评价指标,并对31个高粱品种抗旱性排序。通过SOM聚类分析将31个高粱品种按抗旱性强弱分为5类,吉杂305等4个品种为高度抗旱品种,HL5等4个品种为抗旱品种,辽杂10号等8个品种为中等抗旱品种,锦杂103等7个品种为干旱敏感品种,锦杂93等8个品种为高度干旱敏感品种。研究认为,相对芽长、相对根长和相对萌发抗旱指数等可以作为高粱品种抗旱性鉴定的重要指标;SOM聚类分析可作为品种抗旱性分类的重要方法。