期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Special Issue on Catalytic Activation and Selective Conversion of Energy-Related Molecules
1
作者 Ye Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第6期894-,共1页
The activation and selective conversion of energy-related molecules is an important research area of energy chemistry.The depletion of petroleum has stimulated research activities into the utilization of non-petroleum... The activation and selective conversion of energy-related molecules is an important research area of energy chemistry.The depletion of petroleum has stimulated research activities into the utilization of non-petroleum carbon resources such as natural gas(including conventional and 展开更多
关键词 Special Issue on Catalytic activation and selective Conversion of Energy-Related Molecules ORAL
在线阅读 下载PDF
Effects of Vanadium Oxidation Number on Light Olefins Selectivity of FCC Catalyst 被引量:2
2
作者 Liu Yujian Long Jun +1 位作者 Tian Huiping Zhou Han(Research Institute of Petroleum Processing,SINOPEC,Beijing 100083) 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2011年第2期1-8,共8页
Effects of vanadium on light olefins selectivity of FCC catalysts were investigated with vanadium having different oxidation numbers (hereinafter abbreviated as Oxnum). Molecular modeling studies showed that vanadiu... Effects of vanadium on light olefins selectivity of FCC catalysts were investigated with vanadium having different oxidation numbers (hereinafter abbreviated as Oxnum). Molecular modeling studies showed that vanadium with low Oxnum could affect the chemical conversion of large-size hydrocarbon molecules. However, the vanadium deposited on equilibrium catalyst bad high Oxnum because of the oxidation reaction taking place in the regenerator, so an activation method to reduce vanadium Oxnum named "selective activation" was introduced. It was proved by means of Electron Paramagnetic Resonance (EPR) and Temperature-Programmed Reduction (TPR) methods that the vanadium Oxnum was decreased, when the catalyst was activated. The molecular modeling studies are consistent well with the lab evaluation results. The light olefins selectivity of activated equilibrium catalysts was better than that achieved by the inactivated catalysts. Similar results were observed with the lab vanadium-contaminated catalyst. The light olefins selectivity of the catalyst was optimized when the vanadium Oxnum was close to 2 (VO). 展开更多
关键词 FCC catalyst light olefins selectivity metal deposit oxidation number VANADIUM selective activization
在线阅读 下载PDF
Influence of alkali metal doping on surface properties and catalytic activity/selectivity of CaO catalysts in oxidative coupling of methane 被引量:5
3
作者 V.H.Rane S.T.Chaudhari V.R.Choudhary 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2008年第4期313-320,共8页
Surface properties (viz. surface area, basicity/base strength distribution, and crystal phases) of alkali metal doped CaO (alkali metal/Ca= 0.1 and 0.4) catalysts and their catalytic activity/selectivity in oxidat... Surface properties (viz. surface area, basicity/base strength distribution, and crystal phases) of alkali metal doped CaO (alkali metal/Ca= 0.1 and 0.4) catalysts and their catalytic activity/selectivity in oxidative coupling of methane (OCM) to higher hydrocarbons at different reaction conditions (viz. temperature, 700 and 750 ℃; CH4/O2 ratio, 4.0 and 8.0 and space velocity, 5140-20550 cm^3 ·g^-1·h^-1) have been investigated. The influence of catalyst calcination temperature on the activity/selectivity has also been investigated. The surface properties (viz. surface area, basicity/base strength distribution) and catalytic activity/selectivity of the alkali metal doped CaO catalysts are strongly influenced by the alkali metal promoter and its concentration in the alkali metal doped CaO catalysts. An addition of alkali metal promoter to CaO results in a large decrease in the surface area but a large increase in the surface basicity (strong basic sites) and the C2+ selectivity and yield of the catalysts in the OCM process. The activity and selectivity are strongly influenced by the catalyst calcination temperature. No direct relationship between surface basicity and catalytic activity/selectivity has been observed. Among the alkali metal doped CaO catalysts, Na-CaO (Na/Ca = 0.1, before calcination) catalyst (calcined at 750 ℃), showed best performance (C2+ selectivity of 68.8% with 24.7% methane conversion), whereas the poorest performance was shown by the Rb-CaO catalyst in the OCM process. 展开更多
关键词 oxidative coupling of methane alkali metal doped CaO catalysts basicity/base strength distribution catalytic activity/selectivity
在线阅读 下载PDF
Efficient hydrogen peroxide production enabled by exploring layered metal telluride as two electron oxygen reduction reaction electrocatalyst
4
作者 Yingming Wang Hongyuan Yang +6 位作者 Zhiwei Liu Kui Yin Zhaowu Wang Hui Huang Yang Liu Zhenhui Kang Ziliang Chen 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期247-255,I0007,共10页
It is of great interest to develop the novel transition metal-based electrocatalysts with high selectivity and activity for two electron oxygen reduction reaction(2e^(-) ORR).Herein,the nickel ditelluride(NiTe_(2)) wi... It is of great interest to develop the novel transition metal-based electrocatalysts with high selectivity and activity for two electron oxygen reduction reaction(2e^(-) ORR).Herein,the nickel ditelluride(NiTe_(2)) with layered structure was explored as the 2e^(-) ORR electrocatalyst,which not only showed the highest 2e^(-) selectivity more than 97%,but also delivered a slight activity decay after 5000 cycles in alkaline media.Moreover,when NiTe_(2) was assembled as the electrocatalyst in H-type electrolyzer,the on-site yield of H_(2)O_(2) could reach up to 672 mmol h^(-1)g^(-1) under 0.45 V vs.RHE.Further in situ Raman spectra,theoretical calculation and post microstructural analysis synergistically unveiled that such a good 2e^(-) ORR performance could be credited to the intrinsic layered crystal structure,the high compositional stability,as well as the electron modulation on the active site Ni atoms by neighboring Te atoms,leading to the exposure of active sites as well as the optimized adsorption free energy of Ni to –OOH.More inspiringly,such telluride electrocatalyst has also been demonstrated to exhibit high activity and selectivity towards 2e^(-) ORR in neutral media. 展开更多
关键词 Transition metal telluride Oxygen reduction reaction Charge polarization Activity and selectivity Hydrogen peroxide
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部