期刊文献+
共找到3,096篇文章
< 1 2 155 >
每页显示 20 50 100
Dynamic services selection algorithm in Web services composition supporting cross-enterprises collaboration 被引量:7
1
作者 胡春华 陈晓红 梁昔明 《Journal of Central South University》 SCIE EI CAS 2009年第2期269-274,共6页
Based on the deficiency of time convergence and variability of Web services selection for services composition supporting cross-enterprises collaboration,an algorithm QCDSS(QoS constraints of dynamic Web services sele... Based on the deficiency of time convergence and variability of Web services selection for services composition supporting cross-enterprises collaboration,an algorithm QCDSS(QoS constraints of dynamic Web services selection)to resolve dynamic Web services selection with QoS global optimal path,was proposed.The essence of the algorithm was that the problem of dynamic Web services selection with QoS global optimal path was transformed into a multi-objective services composition optimization problem with QoS constraints.The operations of the cross and mutation in genetic algorithm were brought into PSOA(particle swarm optimization algorithm),forming an improved algorithm(IPSOA)to solve the QoS global optimal problem.Theoretical analysis and experimental results indicate that the algorithm can better satisfy the time convergence requirement for Web services composition supporting cross-enterprises collaboration than the traditional algorithms. 展开更多
关键词 Web services composition optimal service selection improved particle swarm optimization algorithm (IPSOA) cross-enterprises collaboration
在线阅读 下载PDF
Genetic algorithm for pareto optimum-based route selection 被引量:1
2
作者 Cui Xunxue Li Qin Tao Qing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第2期360-368,共9页
A quality of service (QoS) or constraint-based routing selection needs to find a path subject to multiple constraints through a network. The problem of finding such a path is known as the multi-constrained path (MC... A quality of service (QoS) or constraint-based routing selection needs to find a path subject to multiple constraints through a network. The problem of finding such a path is known as the multi-constrained path (MCP) problem, and has been proven to be NP-complete that cannot be exactly solved in a polynomial time. The NPC problem is converted into a multiobjective optimization problem with constraints to be solved with a genetic algorithm. Based on the Pareto optimum, a constrained routing computation method is proposed to generate a set of nondominated optimal routes with the genetic algorithm mechanism. The convergence and time complexity of the novel algorithm is analyzed. Experimental results show that multiobjective evolution is highly responsive and competent for the Pareto optimum-based route selection. When this method is applied to a MPLS and metropolitan-area network, it will be capable of optimizing the transmission performance. 展开更多
关键词 Route selection Multiobjective optimization Pareto optimum Multi-constrained path Genetic algorithm.
在线阅读 下载PDF
An efficient QoS routing algorithm for multi-constrained path selection 被引量:1
3
作者 王建新 彭革刚 +1 位作者 陈松乔 陈建二 《Journal of Central South University of Technology》 2003年第2期151-154,共4页
An efficient QoS routing algorithm was proposed for multiple constrained path selection. Making use of efficient pruning policy, the algorithm reduces greatly the size of search space and the computing time. Although ... An efficient QoS routing algorithm was proposed for multiple constrained path selection. Making use of efficient pruning policy, the algorithm reduces greatly the size of search space and the computing time. Although the proposed algorithm has exponential time complexity in the worst case, it can get the running results quickly in practical application. When the scale of network increases, the algorithm can efficiently control the size of search space by constraint conditions and prior queue. The results of simulation show that successful request ratio ( r ) of efficient algorithm for multi-constrained optimal path (EAMCOP) is better than that of heuristic algorithm for multi-constrained optimal path (H-MCOP), but average computing time ( t ) of EAMCOP is far less than that of H-MCOP. And it can be seen that the computing time of EAMCOP is only one fourth of that of H-MCOP in Advanced Research Projects Agency Network (ARPANet) topology. 展开更多
关键词 QOS ROUTING MULTIPLE CONSTRAINT PATH selection algorithm
在线阅读 下载PDF
Test selection and optimization for PHM based on failure evolution mechanism model 被引量:8
4
作者 Jing Qiu Xiaodong Tan +1 位作者 Guanjun Liu Kehong L 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第5期780-792,共13页
The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuse... The test selection and optimization (TSO) can improve the abilities of fault diagnosis, prognosis and health-state evalua- tion for prognostics and health management (PHM) systems. Traditionally, TSO mainly focuses on fault detection and isolation, but they cannot provide an effective guide for the design for testability (DFT) to improve the PHM performance level. To solve the problem, a model of TSO for PHM systems is proposed. Firstly, through integrating the characteristics of fault severity and propa- gation time, and analyzing the test timing and sensitivity, a testability model based on failure evolution mechanism model (FEMM) for PHM systems is built up. This model describes the fault evolution- test dependency using the fault-symptom parameter matrix and symptom parameter-test matrix. Secondly, a novel method of in- herent testability analysis for PHM systems is developed based on the above information. Having completed the analysis, a TSO model, whose objective is to maximize fault trackability and mini- mize the test cost, is proposed through inherent testability analysis results, and an adaptive simulated annealing genetic algorithm (ASAGA) is introduced to solve the TSO problem. Finally, a case of a centrifugal pump system is used to verify the feasibility and effectiveness of the proposed models and methods. The results show that the proposed technology is important for PHM systems to select and optimize the test set in order to improve their performance level. 展开更多
关键词 test selection and optimization (TSO) prognostics and health management (PHM) failure evolution mechanism model (FEMM) adaptive simulated annealing genetic algorithm (ASAGA).
在线阅读 下载PDF
System level test selection based on combinatorial dependency matrix 被引量:1
5
作者 YANG Peng XIE Haoyu QIU Jing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2021年第4期984-994,共11页
Test selection is to select the test set with the least total cost or the least total number from the alternative test set on the premise of meeting the required testability indicators.The existing models and methods ... Test selection is to select the test set with the least total cost or the least total number from the alternative test set on the premise of meeting the required testability indicators.The existing models and methods are not suitable for system level test selection.The first problem is the lack of detailed data of the units’fault set and the test set,which makes it impossible to establish a traditional dependency matrix for the system level.The second problem is that the system level fault detection rate and the fault isolation rate(referred to as"two rates")are not enough to describe the fault diagnostic ability of the system level tests.An innovative dependency matrix(called combinatorial dependency matrix)composed of three submatrices is presented.The first problem is solved by simplifying the submatrix between the units’fault and the test,and the second problem is solved by establishing the system level fault detection rate,the fault isolation rate and the integrated fault detection rate(referred to as"three rates")based on the new matrix.The mathematical model of the system level test selection problem is constructed,and the binary genetic algorithm is applied to solve the problem,which achieves the goal of system level test selection. 展开更多
关键词 test selection dependency matrix fault detection rate testability prediction binary genetic algorithm
在线阅读 下载PDF
Fuzzy identification of nonlinear dynamic system based on selection of important input variables 被引量:1
6
作者 LYU Jinfeng LIU Fucai REN Yaxue 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第3期737-747,共11页
Input variables selection(IVS) is proved to be pivotal in nonlinear dynamic system modeling. In order to optimize the model of the nonlinear dynamic system, a fuzzy modeling method for determining the premise structur... Input variables selection(IVS) is proved to be pivotal in nonlinear dynamic system modeling. In order to optimize the model of the nonlinear dynamic system, a fuzzy modeling method for determining the premise structure by selecting important inputs of the system is studied. Firstly, a simplified two stage fuzzy curves method is proposed, which is employed to sort all possible inputs by their relevance with outputs, select the important input variables of the system and identify the structure.Secondly, in order to reduce the complexity of the model, the standard fuzzy c-means clustering algorithm and the recursive least squares algorithm are used to identify the premise parameters and conclusion parameters, respectively. Then, the effectiveness of IVS is verified by two well-known issues. Finally, the proposed identification method is applied to a realistic variable load pneumatic system. The simulation experiments indi cate that the IVS method in this paper has a positive influence on the approximation performance of the Takagi-Sugeno(T-S) fuzzy modeling. 展开更多
关键词 Takagi-Sugeno(T-S)fuzzy modeling input variable selection(IVS) fuzzy identification fuzzy c-means clustering algorithm
在线阅读 下载PDF
An Effective Method of Threshold Selection for Small Object Image
7
作者 吴一全 吴加明 占必超 《Defence Technology(防务技术)》 SCIE EI CAS 2011年第4期235-242,共8页
The image segmentation difficulties of small objects which are much smaller than their background often occur in target detection and recognition. The existing threshold segmentation methods almost fail under the circ... The image segmentation difficulties of small objects which are much smaller than their background often occur in target detection and recognition. The existing threshold segmentation methods almost fail under the circumstances. Thus, a threshold selection method is proposed on the basis of area difference between background and object and intra-class variance. The threshold selection formulae based on one-dimensional (1-D) histogram, two-dimensional (2-D) histogram vertical segmentation and 2-D histogram oblique segmentation are given. A fast recursive algorithm of threshold selection in 2-D histogram oblique segmentation is derived. The segmented images and processing time of the proposed method are given in experiments. It is compared with some fast algorithms, such as Otsu, maximum entropy and Fisher threshold selection methods. The experimental results show that the proposed method can effectively segment the small object images and has better anti-noise property. 展开更多
关键词 information processing small infrared target detection image segmentation threshold selection 2-D histogram oblique segmentation fast recursive algorithm
在线阅读 下载PDF
融合MHSA与Boruta的电力系统暂态功角稳定关键特征筛选 被引量:1
8
作者 王曼 周小雨 +2 位作者 陈凡 赖业宁 朱瑛 《电力工程技术》 北大核心 2025年第1期155-164,共10页
现有暂态稳定特征选择方法中初始特征的选定会限制后续寻找最佳特征组合的能力,同时缺乏客观方法来确定关键特征的数量,为此,文中提出一种融合多头自注意力(multi-head self-attention,MHSA)与Boruta的暂态功角稳定关键特征筛选方法。首... 现有暂态稳定特征选择方法中初始特征的选定会限制后续寻找最佳特征组合的能力,同时缺乏客观方法来确定关键特征的数量,为此,文中提出一种融合多头自注意力(multi-head self-attention,MHSA)与Boruta的暂态功角稳定关键特征筛选方法。首先,构建深度神经网络模型,并在输入侧添加MHSA模块进行暂态稳定评估。MHSA直接面向输入的电网特征,可在模型训练过程中自适应调整注意力权重,聚焦关键特征。其次,利用Boruta算法生成真假特征组合,经过MHSA模型的训练,选择高于最大虚假特征权重的真实特征,由模型本身确定关键特征数量。最后,在IEEE 39和IEEE 118节点系统上进行算例分析。算例结果表明,所提方法可在保证评估精度的同时大幅减少输入特征的数量,相比于传统方法,可选出评估精度更高的关键特征。 展开更多
关键词 多头自注意力(MHSA) Boruta算法 暂态稳定 特征选择 关键特征 虚假特征
在线阅读 下载PDF
基于改进VMD及ConvNeXt的小电流接地系统单相接地故障选线方法 被引量:1
9
作者 张浩 张大海 +2 位作者 刘乃毓 吴奎忠 侍哲 《高电压技术》 北大核心 2025年第2期730-741,I0021,共13页
对于小电流接地系统的单相接地故障选线,传统方法普遍采用基于一维信号的选线模型,存在选线准确率低、抗噪性弱等问题。为此提出一种改进的变分模态分解及Conv Ne Xt的小电流接地系统单相接地故障选线方法。首先引入蚁狮算法优化变分模... 对于小电流接地系统的单相接地故障选线,传统方法普遍采用基于一维信号的选线模型,存在选线准确率低、抗噪性弱等问题。为此提出一种改进的变分模态分解及Conv Ne Xt的小电流接地系统单相接地故障选线方法。首先引入蚁狮算法优化变分模态分解算法,通过蚁狮算法自动寻优选取合适的分解次数和惩罚因子,计算分解得到的各分量的分布熵,将其中的噪声分量筛选去除,将其余有效分量进行线性重构得到降噪后的零序电流信号;其次,将经过降噪处理后的一维零序电流信号经格拉姆角场转换为二维图像,制备故障选线数据集;然后,引入预训练的ConvNeXt模型,根据该研究数据模型特征,在其已有权重基础上对模型参数进行对应微调,从而提高模型精度并形成最终的选线模型;最后引入绝对平均误差、均方根误差作为评价指标验证所提降噪算法有效性。分别在加入噪声与否的前提下,将所提模型与3种选线模型相比较。实验结果表明该模型的准确率最高、抗噪性方面更好,其中该研究算法准确率达到了99.82%并且在不同噪声条件下都能维持91%以上的准确率,高于其他选线模型,克服了传统故障选线方法准确率低、抗噪性差的问题。 展开更多
关键词 故障选线 蚁狮优化算法 变分模态分解 分布熵 格拉姆角场 Conv Ne Xt
在线阅读 下载PDF
基于蜣螂优化算法的ORC发电系统工质筛选及综合性能评价 被引量:1
10
作者 彭斌 徐建委 《动力工程学报》 北大核心 2025年第4期635-644,共10页
基于有机朗肯循环(ORC)发电系统工质的筛选存在评价指标不一、不能全面反映系统综合性能等问题,在150℃热源温度下,依据工质选取原则对工质进行初步筛选,通过MATLAB联立REFPROP9.0建立ORC系统的热力学、热经济和环境模型,采用热效率和[... 基于有机朗肯循环(ORC)发电系统工质的筛选存在评价指标不一、不能全面反映系统综合性能等问题,在150℃热源温度下,依据工质选取原则对工质进行初步筛选,通过MATLAB联立REFPROP9.0建立ORC系统的热力学、热经济和环境模型,采用热效率和[火用]效率作为热力学性能指标,单位输出功所需换热面积为热经济性能指标,当量二氧化碳排放量为环保性能指标,对不同工质对系统的热力学性能、热经济性能和环保性能影响进行研究,并通过对比蜣螂优化算法与其余4种常用算法进行工质筛选。结果表明:蒸发温度和冷凝温度对系统的影响较大,蒸发温度升高有利于系统热力学性能的提升,冷凝温度的升高不利于系统的热力学性能和环保性能,过热度只对系统[火用]效率影响较大,对环保性能指标影响较小;蒸发温度在100℃、冷凝温度在30℃时,系统单位输出功所需换热面积最小;R245fa的综合评价函数值远大于其他工质,其综合性能最优。 展开更多
关键词 有机朗肯循环 工质筛选 蜣螂优化算法 综合评价
在线阅读 下载PDF
环境选择的双种群约束多目标狼群算法
11
作者 吕莉 杨凌锋 +3 位作者 肖人彬 孟振宇 崔志华 王晖 《计算机工程与应用》 北大核心 2025年第16期116-131,共16页
针对多目标狼群算法存在的搜索不充分、收敛性不足和多样性欠缺的问题,以及缺少对约束进行处理的问题,提出环境选择的双种群约束多目标狼群算法(multi-objective wolf pack algorithm for dual population constraints with environment... 针对多目标狼群算法存在的搜索不充分、收敛性不足和多样性欠缺的问题,以及缺少对约束进行处理的问题,提出环境选择的双种群约束多目标狼群算法(multi-objective wolf pack algorithm for dual population constraints with environment selection,DCMOWPA-ES)。引入双种群约束处理方法给种群设置不同的搜索偏好,主种群运用可行性准则优先保留可行解,次种群通过ε约束探索不可行区域并将搜索结果传递给主种群,让算法能较好应对复杂的不可行区域,保障算法的可行性;提出维度选择的随机游走策略,使人工狼可自主选择游走方向,提高种群的全局搜索能力;设计精英学习的步长调整机制,人工狼通过向头狼学习的方式提升种群的局部搜索能力,确保算法的收敛性;采用环境选择的狼群更新策略,根据人工狼被支配的情况和所处位置的密度信息对其赋值,选择被支配数少且密度信息小的人工狼作为优秀个体,改善算法的多样性。为验证算法性能,将DCMOWPA-ES与六种新兴约束多目标优化算法在两组约束多目标测试集和汽车侧面碰撞设计问题上进行对比实验。实验结果表明,DCMOWPA-ES算法具备较好的可行性、收敛性和多样性。 展开更多
关键词 狼群算法 双种群约束 维度选择 精英学习 环境选择 约束多目标优化
在线阅读 下载PDF
基于MIC-NNG-LSTM的有机废液焚烧SCR入口NO_(x)浓度动态预测
12
作者 李艳 史艳华 +2 位作者 戴庆瑜 刘嫣 马晓燕 《工程科学与技术》 北大核心 2025年第3期21-30,共10页
针对高盐有机废液焚烧及烟气处理过程中普遍存在的延迟、非线性和动态特性,提出一种基于自适应变量选择与长短期记忆神经网络(MIC-NNG-LSTM)的动态预测方法,对选择性催化还原法(SCR)脱硝塔入口NO_(x)浓度进行预测,解决当工况发生变化时... 针对高盐有机废液焚烧及烟气处理过程中普遍存在的延迟、非线性和动态特性,提出一种基于自适应变量选择与长短期记忆神经网络(MIC-NNG-LSTM)的动态预测方法,对选择性催化还原法(SCR)脱硝塔入口NO_(x)浓度进行预测,解决当工况发生变化时,脱硝系统不能及时调整喷氨量的问题。该预测方法在传统长短期记忆神经网络(LSTM)的基础上,利用最大互信息系数(MIC)法确定相关辅助变量的延迟时间,以全面捕捉变量之间的动态关系。其次,利用MIC可以反映各输入变量相对于目标变量的重要程度,结合能够收缩变量系数的非负绞杀(NNG)算法,设计MIC-NNG算法来压缩LSTM网络的输入节点数,剔除冗余变量,实现辅助变量的自适应选择。最后,将包含延迟时间的辅助变量集作为LSTM网络的输入变量集,从而建立SCR入口NO_(x)浓度动态预测模型。并与LSTM、MICLSTM、NNG-LSTM 3种预测SCR入口NO_(x)浓度的方法进行实验对比,浓度预测精度可达到93%,均方根误差减小为约1.5 mg/Nm^(3)。结果表明:通过引入输入变量的延迟时间特性,能够更好地体现各变量之间的动态关系;MIC-NNG算法相对于NNG算法能更准确地选择输入变量以缩短模型预测时间,提高预测精度和泛化能力。基于MIC-NNG算法和LSTM网络的动态预测模型综合考虑了有机废液焚烧过程中变量的延迟特性和各参数之间的动态时序关系,可以为降低NO_(x)排放量提供新思路。 展开更多
关键词 有机废液 动态预测 变量选择 长短期记忆神经网络 MIC-NNG算法
在线阅读 下载PDF
基于无线传感网络的车联网最优中继节点选取
13
作者 张琰 李娟 马华玲 《传感技术学报》 北大核心 2025年第4期732-737,共6页
针对车联网随机分布状态下面临高速率、低时延、高可靠性等通信需求,设计了无线传感网络下的车联网最优中继节点选取方法。采用D2D通信技术,并引入入簇因子实现通信范围内行驶车辆的分簇。再基于通信范围内各节点车辆的物理传输距离与... 针对车联网随机分布状态下面临高速率、低时延、高可靠性等通信需求,设计了无线传感网络下的车联网最优中继节点选取方法。采用D2D通信技术,并引入入簇因子实现通信范围内行驶车辆的分簇。再基于通信范围内各节点车辆的物理传输距离与社交关系强度在各簇内进行中继节点二次筛选,建立中继节点候选集合。从节点传输效率、传输时延、丢包率三方面综合考量,构建最优中继节点判断矩阵。引入元素乘积算法,实现判断矩阵的求解,完成车联网中最优中继节点的选择。结果表明,所提方法选取的中继节点,数据传输吞吐量为9.1×10^(5) bps,中断概率为6.8×10^(-5),能效值最高可达到12.8 bit/J,说明所提方法可保障车联网内数据的高效、稳定传输,对智能交通领域的发展具有重要意义。 展开更多
关键词 车联网通信 中继节点选取 二次筛选 元素乘积算法
在线阅读 下载PDF
基于机器学习的动车传动齿轮修形仿真研究
14
作者 刘志超 黄志辉 +2 位作者 李治桦 杨成龙 陈丙硕 《制造技术与机床》 北大核心 2025年第8期87-95,共9页
动车传动齿轮在工作过程中存在齿面偏载和啮合冲击等问题,易造成齿轮失效。为改善此类问题,以CRH3动车为例,在Romax软件中建立了包含车轴和轴承的齿轮传动系统三维模型。基于RFE-XGBoost(recursive feature elimination-extreme gradien... 动车传动齿轮在工作过程中存在齿面偏载和啮合冲击等问题,易造成齿轮失效。为改善此类问题,以CRH3动车为例,在Romax软件中建立了包含车轴和轴承的齿轮传动系统三维模型。基于RFE-XGBoost(recursive feature elimination-extreme gradient boosting)特征选取模型,从通常采用的9个修形参数中筛选出最优修形参数组合。以筛选后的最优修形参数组合为输入变量,单位长度法向载荷为响应变量,分别基于反向传播(back propagation,BP)神经网络神经网络、随机森林回归、XGBoost算法构建了代理模型,并进行对比选择。最后采用粒子群优化(particle swarm optimization,PSO)算法调用代理模型,以单位长度法向载荷最小为优化目标,对齿轮修形参数取值进行寻优计算。优化结果表明,齿向斜度为13.6μm、齿端修薄长度为18.5 mm、齿端修薄量为4.4μm时齿轮修形效果最佳。通过Romax仿真计算验证,其单位长度法向载荷下降了24.36%,传动误差值下降了69.91%,有效改善了齿轮传动性能,缓解了齿面偏载的现象。研究结果可为齿轮修形方案选择和优化设计提供参考。 展开更多
关键词 动车传动齿轮 特征选取 齿轮修形 XGBoost算法 齿面接触分析
在线阅读 下载PDF
基于精细化叠加尾流模型的海上风电场微观选址
15
作者 黄玲玲 陈昊 刘阳 《太阳能学报》 北大核心 2025年第4期477-484,共8页
针对传统的解析尾流叠加模型难以准确反映多台风电机组尾流影响下的风速损耗,而高精度CFD仿真计算时间过长,不适用于风电场机组微观选址优化的问题,基于质量守恒和动量守恒定律推导一种改进尾流叠加模型,并通过与FAST.Farm仿真结果的对... 针对传统的解析尾流叠加模型难以准确反映多台风电机组尾流影响下的风速损耗,而高精度CFD仿真计算时间过长,不适用于风电场机组微观选址优化的问题,基于质量守恒和动量守恒定律推导一种改进尾流叠加模型,并通过与FAST.Farm仿真结果的对比,论证所提改进叠加模型的精确性和快速性。构建一个以全寿命周期成本为目标函数的微观选址模型,并通过自适应被囊群算法求解该模型。通过海上风电场风电机组选址算例结果论证所提算法的有效性和优越性。 展开更多
关键词 海上风电场 尾流 微观选址 FAST.Farm仿真 被囊群算法
在线阅读 下载PDF
混合多策略北方苍鹰优化算法及特征选择
16
作者 鲍美英 申晋祥 +1 位作者 张景安 周建慧 《现代电子技术》 北大核心 2025年第11期121-130,共10页
针对北方苍鹰优化(NGO)算法在处理复杂优化问题时,存在收敛速度慢、求解精度低和易陷入局部最优等问题,提出融合多种策略的北方苍鹰优化(LANGO)算法。LANGO算法采用Tent混沌映射和反向学习策略初始化种群,增加种群多样性,提高全局搜索能... 针对北方苍鹰优化(NGO)算法在处理复杂优化问题时,存在收敛速度慢、求解精度低和易陷入局部最优等问题,提出融合多种策略的北方苍鹰优化(LANGO)算法。LANGO算法采用Tent混沌映射和反向学习策略初始化种群,增加种群多样性,提高全局搜索能力;引入非线性权重因子,改善全局勘探能力,提高算法的收敛速度和收敛精度;引入Lévy飞行,改进NGO算法采用随机猎物引导种群易陷入局部最优的缺陷,对陷入局部最优的解进行扰动,使其跳出局部最优。选取8个经典基准函数进行测试,仿真结果表明,LANGO在求解精度、收敛速度等方面都优于比较算法。LANGO与K近邻分类器相结合,用于解决特征选择问题,进行数据分类,可以对特征有效降维并提高数据分类的准确率。 展开更多
关键词 北方苍鹰优化算法 Lévy飞行 特征选择 K近邻分类器 权重因子 收敛性
在线阅读 下载PDF
基于改进乌燕鸥算法同步优化SVM的特征选择
17
作者 赵小强 缐文霞 《兰州理工大学学报》 北大核心 2025年第3期89-98,共10页
针对支持向量机(SVM)中特征选择和参数优化对分类精度有较大影响的问题,提出了一种基于改进乌燕鸥算法同步优化SVM的特征选择算法.首先利用Tent混沌映射对乌燕鸥种群初始化,增加种群多样性,在此基础上引入余弦自适应并结合模拟退火算法... 针对支持向量机(SVM)中特征选择和参数优化对分类精度有较大影响的问题,提出了一种基于改进乌燕鸥算法同步优化SVM的特征选择算法.首先利用Tent混沌映射对乌燕鸥种群初始化,增加种群多样性,在此基础上引入余弦自适应并结合模拟退火算法,避免乌燕鸥算法陷入局部最优的缺陷,增强算法全局搜索能力,提高收敛精度;其次将改进算法同特征选择和支持向量机相结合,同步优化二进制特征选择和SVM的参数;最后在10个标准数据集上进行特征选择仿真对比实验,实验结果表明相比原始算法及其他对比优化算法,所提算法能有效降低数据维度,提高分类准确率. 展开更多
关键词 乌燕鸥优化算法 余弦自适应 模拟退火算法 支持向量机 特征选择
在线阅读 下载PDF
基于多用户反射单元选择的IRS速率最大化算法
18
作者 韩东升 蒋智泉 《电子测量技术》 北大核心 2025年第6期99-105,共7页
智能反射面(IRS)是未来6G的关键技术之一,然而在多用户系统中,系统的计算复杂度随反射单元数量和用户数量增加而大幅度增加,系统的优化设计面临着极大挑战。为此,本文提出了一种基于多用户反射单元选择的低计算复杂传输速率最大化算法... 智能反射面(IRS)是未来6G的关键技术之一,然而在多用户系统中,系统的计算复杂度随反射单元数量和用户数量增加而大幅度增加,系统的优化设计面临着极大挑战。为此,本文提出了一种基于多用户反射单元选择的低计算复杂传输速率最大化算法。该算法根据用户的速率需求和信道状况,选择匹配的反射单元,综合考虑相移设置和基站波束赋形,进行联合优化,建立了一个用户速率最大化问题。由于该优化问题变量之间存在高度耦合。因此,将原始问题划分为两个子问题进行求解,使用半正定松弛得到近似解。仿真结果表明,本文算法可以大幅降低系统的计算复杂度同时提高下行传输速率,相比与无IRS辅助系统,传输速率提升约50%;与随机相位IRS相比,传输速率提升约30%。 展开更多
关键词 智能反射面 选择算法 计算复杂度 资源分配
在线阅读 下载PDF
基于分段评价遗传算法的移动机器人路径规划
19
作者 谢嘉 孙帅浩 +3 位作者 李永国 梁锦涛 金昌兵 陈学飞 《传感技术学报》 北大核心 2025年第6期1064-1071,共8页
针对传统遗传算法在处理路径规划问题时存在适应性差、收敛速度慢和易早熟等问题,提出一种基于分段评价路径的改进遗传算法。设计一种动态权重适应度函数,在线调节参数并考虑坡度因素,来增强算法对复杂环境的适应能力;提出一种新的交叉... 针对传统遗传算法在处理路径规划问题时存在适应性差、收敛速度慢和易早熟等问题,提出一种基于分段评价路径的改进遗传算法。设计一种动态权重适应度函数,在线调节参数并考虑坡度因素,来增强算法对复杂环境的适应能力;提出一种新的交叉变异方式,分段评价个体后进行有选择性的交叉和变异,提升算法的寻优能力,加快收敛速度;采用模糊控制在线调节交叉变异概率,避免算法早熟;引入删除算子剔除冗余节点,提高最优解的平滑性;在20×20和30×30地图环境上进行仿真实验,结果表明所提算法具有更强的适应能力,改进型交叉变异能更快地搜索到更优路径,在线调节交叉变异概率很好地避免了算法早熟,最终解在路径长度、收敛速度及平滑度上均有提升。 展开更多
关键词 路径规划 分段评价路径 改进遗传算法 动态权重适应度函数 选择性交叉变异 模糊控制
在线阅读 下载PDF
一种基于数据驱动的空调负荷预测方法
20
作者 周孟然 周光耀 +6 位作者 胡锋 朱梓伟 张奇奇 王玲 孔伟乐 吴长臻 崔恩汉 《河南师范大学学报(自然科学版)》 北大核心 2025年第3期128-134,共7页
空调负荷预测是空调负荷潜力分析和电网空调负荷调控的基础,为了精确地对空调负荷进行预测,文中提出了一种考虑到外界影响因素以及集成优化的空调负荷预测方法.首先,拟定好实验运行方案并采集影响因素数据.其次,使用近邻成分分析(NCA)... 空调负荷预测是空调负荷潜力分析和电网空调负荷调控的基础,为了精确地对空调负荷进行预测,文中提出了一种考虑到外界影响因素以及集成优化的空调负荷预测方法.首先,拟定好实验运行方案并采集影响因素数据.其次,使用近邻成分分析(NCA)方法进行特征选择,剔除重要度小的特征.然后使用白鲨优化算法(white shark optimizer,WSO)对支持向量回归(support vector regression,SVR)的正则化参数和核函数的宽度参数进行优化,最后,结合自适应提升算法(adaptive boosting,Adaboost)构建Adaboost-WSO-SVR主模型,检验其精度并与其他方法进行比较.结果表明,提出的Adaboost-WSO-SVR主模型相比于集成优化后的BP,ELM模型精度更高.可知提出的方法在负荷预测方面效果更好,为空调节能优化控制策略提供依据. 展开更多
关键词 空调负荷 负荷预测 特征选择 白鲨优化算法 自适应提升算法 支持向量回归
在线阅读 下载PDF
上一页 1 2 155 下一页 到第
使用帮助 返回顶部