In this paper, the seismic response of a newly designed steel jacket offshore platform with a float over deck (FOD) system in the Persian Gulf was investigated through incremental dynamic analysis. Comparison of inc...In this paper, the seismic response of a newly designed steel jacket offshore platform with a float over deck (FOD) system in the Persian Gulf was investigated through incremental dynamic analysis. Comparison of incremental dynamic analysis results for both directions of the platform shows that the lateral strength of the platform in the float over direction is less than its lateral strength in other direction. Dynamic characteristics measurement of a scale model of platform was also performed using forced vibration tests. From experimental measurement of the scaled model, it was observed that dynamic characteristic of the platform is different in the float over direction compared to the other direction. Therefore, a new offshore installed bracing system for the float over direction was proposed for improvement of seismic performance of this type of platform. Finally, the structure with the modified system was assessed using the probabilistic seismic assessment method as well as experimental measurement of its dynamic characteristics. It was observed that the proposed offshore installed bracing system improves the performance of platforms subjected to strong ground motion.展开更多
Two single-storey single-span reinforcement concrete (RC) frame structures strengthened with Y-eccentrically brace were designed and manufactured to be 1/3 scale. The pseudo-dynamic testing method was used to study ...Two single-storey single-span reinforcement concrete (RC) frame structures strengthened with Y-eccentrically brace were designed and manufactured to be 1/3 scale. The pseudo-dynamic testing method was used to study the mechanical characteristics and the seismic performance under E1-Centro earthquake action with different peak acceleration adjusted by China's Code for Seismic Design of Buildings. The test results indicate that RC frame structures strengthened with Y- eccentrically steel brace present perfect seismic performance under strong earthquake action owing to the good ductility, strong bearing capability and fine energy absorbing capability provided by energy dissipation element and high lateral stiffness provided by diagonal braces. The seismic performance is also affected by the length of outsourcing steel at the joint between energy dissipation element of eccentric steel brace and RC frame beam. The joint should be considerably designed to make sure that shear failure can firstly occur in energy dissipation element.展开更多
基金sponsored by POGC (Pars Oil and Gas Company,No.132 "Investigation of Structural Health Monitoring of Steel Jacket Offshore Platforms")The financial support of POGC is gratefully acknowledged
文摘In this paper, the seismic response of a newly designed steel jacket offshore platform with a float over deck (FOD) system in the Persian Gulf was investigated through incremental dynamic analysis. Comparison of incremental dynamic analysis results for both directions of the platform shows that the lateral strength of the platform in the float over direction is less than its lateral strength in other direction. Dynamic characteristics measurement of a scale model of platform was also performed using forced vibration tests. From experimental measurement of the scaled model, it was observed that dynamic characteristic of the platform is different in the float over direction compared to the other direction. Therefore, a new offshore installed bracing system for the float over direction was proposed for improvement of seismic performance of this type of platform. Finally, the structure with the modified system was assessed using the probabilistic seismic assessment method as well as experimental measurement of its dynamic characteristics. It was observed that the proposed offshore installed bracing system improves the performance of platforms subjected to strong ground motion.
基金Funded by National Natural Science Foundation of China (Grant No. 51078248)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘Two single-storey single-span reinforcement concrete (RC) frame structures strengthened with Y-eccentrically brace were designed and manufactured to be 1/3 scale. The pseudo-dynamic testing method was used to study the mechanical characteristics and the seismic performance under E1-Centro earthquake action with different peak acceleration adjusted by China's Code for Seismic Design of Buildings. The test results indicate that RC frame structures strengthened with Y- eccentrically steel brace present perfect seismic performance under strong earthquake action owing to the good ductility, strong bearing capability and fine energy absorbing capability provided by energy dissipation element and high lateral stiffness provided by diagonal braces. The seismic performance is also affected by the length of outsourcing steel at the joint between energy dissipation element of eccentric steel brace and RC frame beam. The joint should be considerably designed to make sure that shear failure can firstly occur in energy dissipation element.
基金supported by the Visiting Scholar Foundation of Key Laboratory of New Technology for Construction of Cities in Mountain Area in Chongqing University, China