期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
YOLOv8改进算法在油茶果分拣中的应用
1
作者 刘姜毅 高自成 +2 位作者 刘怀粤 尹浇钦 罗媛尹 《林业工程学报》 北大核心 2025年第1期120-127,共8页
现有的油茶果分拣系统所依赖的YOLO等算法的目标检测、实例分割在低尺寸及密集型样本中鲁棒性较差,存在机械臂常抓取到枝叶、抓取不牢固、易脱落等问题。大部分系统使用目标识别,无法准确识别油茶果具体轮廓信息,不能对油茶果进行大小... 现有的油茶果分拣系统所依赖的YOLO等算法的目标检测、实例分割在低尺寸及密集型样本中鲁棒性较差,存在机械臂常抓取到枝叶、抓取不牢固、易脱落等问题。大部分系统使用目标识别,无法准确识别油茶果具体轮廓信息,不能对油茶果进行大小分类。针对这一问题,研究提出了YOWNet模型应对油茶果分拣的小目标、高密度识别任务。首先,研究了自动化边缘标注脚本,脚本调用零样本Segment Anything框架对原有已标注的油茶果目标检测框提取兴趣区间,将其自动转化为边缘标注信息;其次,为了提高模型对小目标的识别能力,研究摒弃了现有的固定感受野的卷积模块,针对油茶果特性提出三维注意力动态卷积模块用于捕捉特征图中的关键信息;最后,研究通过使用Wise⁃IoU损失函数,基于动态非单调聚焦机制的边界框损失,提升边框回归精度。总体网络模型命名为YOWNet,通过与YOLOv8在油茶果上的消融实验对比,试验结果表明:YOWNet模型能够快速准确地识别油茶果实例,在私有数据集上,准确度、Box_loss可达89.90%和0.523。 展开更多
关键词 油茶果 三维动态卷积 实例分割 YOLOv8 Segment Anything Model Wise⁃IoU
在线阅读 下载PDF
基于SAM&ImageJ图像处理的堆石混凝土坝层面露石率研究 被引量:2
2
作者 安宇 徐小蓉 +2 位作者 尹志刚 金峰 张喜喜 《水资源与水工程学报》 CSCD 北大核心 2024年第1期154-161,共8页
堆石混凝土坝层面的外露块石为上下层提供了重要的啮合作用,其投影面积比例是科学评价层间抗剪性能的重要指标。采用国际最新Meta AI模型segment anything model(SAM)对层面外露堆石进行自动图像分割,并基于ImageJ软件对SAM识别后的图... 堆石混凝土坝层面的外露块石为上下层提供了重要的啮合作用,其投影面积比例是科学评价层间抗剪性能的重要指标。采用国际最新Meta AI模型segment anything model(SAM)对层面外露堆石进行自动图像分割,并基于ImageJ软件对SAM识别后的图片进行再加工与图像计算,利用平滑、差分算法、中值滤波等方法精准标定外露堆石,二值化后计算得到层面露石率。结果表明:SAM图像预分割可识别约90%的外露堆石,经过ImageJ二次图像处理后可有效提高小粒径堆石的识别精度,对比手动标注结果误差在±3%以内。以贵州省两座水库的工程应用为例,对浇筑仓面进行分区预处理,结果发现靠近上游、中部、下游不同区域的露石率差别较大,计算得到的层面露石率以10%~30%居多,其中堆石入仓运输通道区域的露石率较低。研究内容与结论可为堆石混凝土结构层间界面抗剪力学性能和大坝蓄水安全稳定的研究提供参考与借鉴。 展开更多
关键词 堆石混凝土坝 segment anything model(SAM) 图像处理技术 露石率 层间抗剪性能
在线阅读 下载PDF
结合SAM视觉分割模型与随机森林机器学习的无人机影像盐沼植被“精灵圈”提取
3
作者 周若彤 谭凯 +2 位作者 杨建儒 韩江涛 张卫国 《海洋学报》 CAS CSCD 北大核心 2024年第5期116-126,共11页
“精灵圈”是海岸带盐沼植被生态系统中的一种“空间自组织”结构,对盐沼湿地的生产力、稳定性和恢复力有重要影响。无人机影像是实现“精灵圈”空间位置高精度识别及解译其时空演化趋势与规律的重要数据源,但“精灵圈”像素与背景像素... “精灵圈”是海岸带盐沼植被生态系统中的一种“空间自组织”结构,对盐沼湿地的生产力、稳定性和恢复力有重要影响。无人机影像是实现“精灵圈”空间位置高精度识别及解译其时空演化趋势与规律的重要数据源,但“精灵圈”像素与背景像素在色彩信息和外形特征上差异较小,如何从二维影像中智能精准地识别“精灵圈”像素并对识别的单个像素形成个体“精灵圈”是目前的技术难点。本文提出了一种结合分割万物模型(Segment Anything Model,SAM)视觉分割模型与随机森林机器学习的无人机影像“精灵圈”分割及分类方法,实现了单个“精灵圈”的识别和提取。首先,通过构建索伦森-骰子系数(S?rensen-Dice coefficient,Dice)和交并比(Intersection over Union,IOU)评价指标,从SAM中筛选预训练模型并对其参数进行优化,实现全自动影像分割,得到无属性信息的分割掩码/分割类;然后,利用红、绿、蓝(RGB)三通道信息及空间二维坐标将分割掩码与原图像进行信息匹配,构造分割掩码的特征指标,并根据袋外数据(Out of Bag,OOB)误差减小及特征分布规律对特征进行分析和筛选;最后,利用筛选的特征对随机森林模型进行训练,实现“精灵圈”植被、普通植被和光滩的自动识别与分类。实验结果表明:本文方法“精灵圈”平均正确提取率96.1%,平均错误提取率为9.5%,为精准刻画“精灵圈”时空格局及海岸带无人机遥感图像处理提供了方法和技术支撑。 展开更多
关键词 盐沼植被 精灵圈 segment anything model(SAM) 无人机影像 机器学习
在线阅读 下载PDF
一种街景图像中建筑物高度估算方法
4
作者 戈士博 刘纪平 +1 位作者 王勇 车向红 《遥感信息》 CSCD 北大核心 2024年第3期1-6,共6页
建筑物高度信息是城市三维建模的基础数据,但已有的建筑物高度估算研究多采用LiDAR和SAR等遥感影像。随着计算机和互联网的快速发展,街景数据因采集容易和成本低等特点成为了一种新兴的建筑物高度估算数据源。文章提出一种街景图像中建... 建筑物高度信息是城市三维建模的基础数据,但已有的建筑物高度估算研究多采用LiDAR和SAR等遥感影像。随着计算机和互联网的快速发展,街景数据因采集容易和成本低等特点成为了一种新兴的建筑物高度估算数据源。文章提出一种街景图像中建筑物高度估算方法,首先利用segment anything model实现图像中建筑物像素高度提取;然后利用图像元数据和电子地图数据获取建筑物与相机之间的距离、图像焦距,根据街景图像与建筑物实体的几何关系改进针孔相机模型,构建建筑物高度估算方法;最后选取北京、柏林的Mapillary街景图像开展实验验证。结果表明,与改进前相比,改进后针孔相机模型明显提升了高度估算准确度,RMSE降低了11.31 m,R^(2)提高了0.4,具备实用价值。 展开更多
关键词 街景图像 建筑物高度估算 针孔相机模型 segment anything model Mapillary
在线阅读 下载PDF
A nonlinear hydroelastic method considering wave memory effect for ship load responses in irregular waves
5
作者 陈占阳 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第9期2058-2070,共13页
Since the amplitude and frequency of irregular waves change with time,great difficulties are brought for solving ship load responses in random waves.To take the effect of various frequencies of irregular waves into co... Since the amplitude and frequency of irregular waves change with time,great difficulties are brought for solving ship load responses in random waves.To take the effect of various frequencies of irregular waves into consideration in load responses of hull,the wave memory effect is necessary.A semi-analytical method is introduced for the time-domain retardation functions,and then a nonlinear hydroelastic method considering memory effect for ships in irregular waves is proposed.Segmented self-propelling model experiments of a container ship were carried out in a towing tank,a ship motion measuring device for self-propelling model test was designed.Whipping responses of the ship in regular and irregular waves are analyzed.Finally,the calculation results are compared with those measured by segmented model experiments,and the result indicates that the memory effect has little effect on load responses of ship in regular waves,but pronounced effect on results in irregular waves.Moreover,the presented method is reasonable for the prediction of ship load responses in irregular waves. 展开更多
关键词 HYDROELASTICITY memory effect retardation function segmented self-propelling model test irregular waves
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部