Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex str...Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex structural optimization problems, if the structural reanalysis technique is not adopted, the more the number of finite element analysis (FEA) is, the more the consuming time is. In the conventional structural optimization the number of FEA can be reduced by the structural reanalysis technique based on the approximation techniques and sensitivity analysis. With these techniques, this paper provides a new approximation model-segment approximation model, adopted for the GA application. This segment approximation model can decrease the number of FEA and increase the convergence rate of GA. So it can apparently decrease the computation time of GA. Two examples demonstrate the availability of the new segment approximation model.展开更多
Estimating individual tree volume is one of the essential building blocks in forest growth and yield models. Ecologically based taper equations provide accurate vol- ume predictions and allow classification by mer- ch...Estimating individual tree volume is one of the essential building blocks in forest growth and yield models. Ecologically based taper equations provide accurate vol- ume predictions and allow classification by mer- chantable sizes, assisting in sustainable forest management. In the present study, ecoregion-based compatible volume systems for brutian pine and black pine in the three ecoregions of southern Turkey were developed. Several well-known taper functions were evaluated. A second- order continuous-time autoregressive error structure was used to correct the inherent autocorrelation in the hierar- chical data, allowing the model to be applied to irregularly spaced and unbalanced data. The compatible segmented model of Fang et al. (For Sci 46:1-12, 2000) best described the experimental data. It is therefore recommended for estimating diameter at a specific height, height to a specific diameter, merchantable volume, and total volume for the three ecoregions and two species analyzed. The nonlinearextra sum of squares method indicated differences in ecoregion and tree-specific taper functions. A different taper function should therefore be used for each pine spe- cies and ecoregion in southern Turkey. Using ecoregion- specific taper equations allows making more robust esti- mations and, therefore, will enhance the accuracy of diameter at different heights and volume predictions.展开更多
We developed a simple polynomial taper equation for poplars growing on former farmland in Sweden and also evaluated the performance of some well-known taper equations. In Sweden there is an increasing interest in the ...We developed a simple polynomial taper equation for poplars growing on former farmland in Sweden and also evaluated the performance of some well-known taper equations. In Sweden there is an increasing interest in the use of poplar. Effective management of poplar plantations for high yield production would be facilitated by taper equations providing better predictions of stem volume than currently available equations. In the study a polynomial stem taper equation with five parameters was established for individual poplar trees growing on former farmland. The outputs of the polynomial taper equation were compared with five published equations. Data for fitting the equations were collected from 69 poplar trees growing at 37 stands in central and southern Sweden (lat. 55–60° N). The mean age of the stands was 21 years (range 14–43), the mean density 984 stems·ha?1 (198–3,493), and the mean diameter at breast height (outside bark) 25 cm (range 12–40). To verify the tested equations, performance of accuracy and precision diameter predictions at seven points along the stem was closely analyzed. Statistics used for evaluation of the equations indicated that the variable exponent taper equation presented by Kozak (1988) performed best and can be recommended. The stem taper equation by Kozak (1988) recommended in the study is likely to be beneficial for optimising the efficiency and profitability of poplar plantation management. The constructed polynomial equation and the segmented equation presented by Max & Burkhart (1976) were second and third ranked. Due to the statistical complexity of Kozak’s equation, the constructed polynomial equation is alternatively recommended when a simple model is requested and larger bias is accepted.展开更多
The desire to benefit from economy of scale is one of the major driving forces behind the continuous growth in ship sizes. However, models of new large ships need to be thoroughly investigated to determine the carrier...The desire to benefit from economy of scale is one of the major driving forces behind the continuous growth in ship sizes. However, models of new large ships need to be thoroughly investigated to determine the carrier's response in waves. In this work, experimental and numerical assessments of the motion and load response of a 550,000 DWT ore carrier are performed using prototype ships with softer stiffness, and towing tank tests are conducted using a segmented model with two schemes of softer stiffness. Numerical analyses are performed employing both rigid body and linear hydroelasticity theories using an in-house program and a comparison is then made between experimental and numerical results to establish the influence of stiffness on the ore carrier's springing response. Results show that softer stiffness models can be used when studying the springing response of ships in waves.展开更多
According to the tensile failure of rock bolt in weakly cemented soft rock, this paper presents a new segmented anchoring style in order to weaken the cumulative effect of anchoring force associated with the large def...According to the tensile failure of rock bolt in weakly cemented soft rock, this paper presents a new segmented anchoring style in order to weaken the cumulative effect of anchoring force associated with the large deformation. Firstly, a segmented mechanical model was established in which free and anchoring section of rock bolt were respectively arranged in different deformation zones. Then, stress and displacement in elastic non-anchoring zone, elastic anchoring zone, elastic sticking zone, softening sticking zone and broken zone were derived respectively based on neural theory and tri-linear strain softening constitutive model of soft rock. Results show that the anchoring effect can be characterized by a supporting parameter b. With its increase, the peak value of tangential stress gradually moves to the roadway wall, and the radial stress significantly increases, which means the decrease of equivalent plastic zone and improvement of confining effect provided by anchorage body. When b increases to 0.72, the equivalent plastic zone disappears, and stresses tend to be the elastic solutions. In addition, the anchoring effect on the displacement of surrounding rock can be quantified by a normalization factor δ.展开更多
Existing sandstone rock structure evaluation methods rely on visual inspection,with low efficiency,semi-quantitative analysis of roundness,and inability to perform classified statistics in particle size analysis.This ...Existing sandstone rock structure evaluation methods rely on visual inspection,with low efficiency,semi-quantitative analysis of roundness,and inability to perform classified statistics in particle size analysis.This study presents an intelligent evaluation method for sandstone rock structure based on the Segment Anything Model(SAM).By developing a lightweight SAM fine-tuning method with rank-decomposition matrix adapters,a multispectral rock particle segmentation model named CoreSAM is constructed,which achieves rock particle edge extraction and type identification.Building upon this,we propose a comprehensive quantitative evaluation system for rock structure,assessing parameters including particle size,sorting,roundness,particle contact and cementation types.The experimental results demonstrate that CoreSAM outperforms existing methods in rock particle segmentation accuracy while showing excellent generalization across different image types such as CT scans and core photographs.The proposed method enables full-sample,classified particle size analysis and quantitative characterization of parameters like roundness,advancing reservoir evaluation towards more precise,quantitative,intuitive,and comprehensive development.展开更多
文摘Although the genetic algorithm (GA) has very powerful robustness and fitness, it needs a large size of population and a large number of iterations to reach the optimum result. Especially when GA is used in complex structural optimization problems, if the structural reanalysis technique is not adopted, the more the number of finite element analysis (FEA) is, the more the consuming time is. In the conventional structural optimization the number of FEA can be reduced by the structural reanalysis technique based on the approximation techniques and sensitivity analysis. With these techniques, this paper provides a new approximation model-segment approximation model, adopted for the GA application. This segment approximation model can decrease the number of FEA and increase the convergence rate of GA. So it can apparently decrease the computation time of GA. Two examples demonstrate the availability of the new segment approximation model.
基金financially supported by the Scientific and Technological Research Council of Turkey(Project No:109 O 714)
文摘Estimating individual tree volume is one of the essential building blocks in forest growth and yield models. Ecologically based taper equations provide accurate vol- ume predictions and allow classification by mer- chantable sizes, assisting in sustainable forest management. In the present study, ecoregion-based compatible volume systems for brutian pine and black pine in the three ecoregions of southern Turkey were developed. Several well-known taper functions were evaluated. A second- order continuous-time autoregressive error structure was used to correct the inherent autocorrelation in the hierar- chical data, allowing the model to be applied to irregularly spaced and unbalanced data. The compatible segmented model of Fang et al. (For Sci 46:1-12, 2000) best described the experimental data. It is therefore recommended for estimating diameter at a specific height, height to a specific diameter, merchantable volume, and total volume for the three ecoregions and two species analyzed. The nonlinearextra sum of squares method indicated differences in ecoregion and tree-specific taper functions. A different taper function should therefore be used for each pine spe- cies and ecoregion in southern Turkey. Using ecoregion- specific taper equations allows making more robust esti- mations and, therefore, will enhance the accuracy of diameter at different heights and volume predictions.
基金financially supported by Skogssll-skapet foundation
文摘We developed a simple polynomial taper equation for poplars growing on former farmland in Sweden and also evaluated the performance of some well-known taper equations. In Sweden there is an increasing interest in the use of poplar. Effective management of poplar plantations for high yield production would be facilitated by taper equations providing better predictions of stem volume than currently available equations. In the study a polynomial stem taper equation with five parameters was established for individual poplar trees growing on former farmland. The outputs of the polynomial taper equation were compared with five published equations. Data for fitting the equations were collected from 69 poplar trees growing at 37 stands in central and southern Sweden (lat. 55–60° N). The mean age of the stands was 21 years (range 14–43), the mean density 984 stems·ha?1 (198–3,493), and the mean diameter at breast height (outside bark) 25 cm (range 12–40). To verify the tested equations, performance of accuracy and precision diameter predictions at seven points along the stem was closely analyzed. Statistics used for evaluation of the equations indicated that the variable exponent taper equation presented by Kozak (1988) performed best and can be recommended. The stem taper equation by Kozak (1988) recommended in the study is likely to be beneficial for optimising the efficiency and profitability of poplar plantation management. The constructed polynomial equation and the segmented equation presented by Max & Burkhart (1976) were second and third ranked. Due to the statistical complexity of Kozak’s equation, the constructed polynomial equation is alternatively recommended when a simple model is requested and larger bias is accepted.
基金Supported by the National Natural Science Foundation of China (Grant No. 51079034), and the National Basic Research Program of China (Grant No. 2011CB013703)
文摘The desire to benefit from economy of scale is one of the major driving forces behind the continuous growth in ship sizes. However, models of new large ships need to be thoroughly investigated to determine the carrier's response in waves. In this work, experimental and numerical assessments of the motion and load response of a 550,000 DWT ore carrier are performed using prototype ships with softer stiffness, and towing tank tests are conducted using a segmented model with two schemes of softer stiffness. Numerical analyses are performed employing both rigid body and linear hydroelasticity theories using an in-house program and a comparison is then made between experimental and numerical results to establish the influence of stiffness on the ore carrier's springing response. Results show that softer stiffness models can be used when studying the springing response of ships in waves.
基金Financial support for this work was provided by the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents of China(No.2015RCJJ042)the National Natural Science Foundation of China(Nos.41472280,51274133)+1 种基金the Promotive Research Fund for Excellent Young and Middle-aged Scientisits of Shandong Province of China(No.BS2015SF005)the Opening Project Fund of Shandong Provincial Key Laboratory of Civil Engineering Disaster Prevention and Mitigation(No.CDPM2013KF05)
文摘According to the tensile failure of rock bolt in weakly cemented soft rock, this paper presents a new segmented anchoring style in order to weaken the cumulative effect of anchoring force associated with the large deformation. Firstly, a segmented mechanical model was established in which free and anchoring section of rock bolt were respectively arranged in different deformation zones. Then, stress and displacement in elastic non-anchoring zone, elastic anchoring zone, elastic sticking zone, softening sticking zone and broken zone were derived respectively based on neural theory and tri-linear strain softening constitutive model of soft rock. Results show that the anchoring effect can be characterized by a supporting parameter b. With its increase, the peak value of tangential stress gradually moves to the roadway wall, and the radial stress significantly increases, which means the decrease of equivalent plastic zone and improvement of confining effect provided by anchorage body. When b increases to 0.72, the equivalent plastic zone disappears, and stresses tend to be the elastic solutions. In addition, the anchoring effect on the displacement of surrounding rock can be quantified by a normalization factor δ.
基金Supported by the National Natural Science Foundation of China(42372175,72088101)PetroChina Science and Technology Project of(2023DJ84)Basic Research Cooperation Project between China National Petroleum Corporation and Peking University.
文摘Existing sandstone rock structure evaluation methods rely on visual inspection,with low efficiency,semi-quantitative analysis of roundness,and inability to perform classified statistics in particle size analysis.This study presents an intelligent evaluation method for sandstone rock structure based on the Segment Anything Model(SAM).By developing a lightweight SAM fine-tuning method with rank-decomposition matrix adapters,a multispectral rock particle segmentation model named CoreSAM is constructed,which achieves rock particle edge extraction and type identification.Building upon this,we propose a comprehensive quantitative evaluation system for rock structure,assessing parameters including particle size,sorting,roundness,particle contact and cementation types.The experimental results demonstrate that CoreSAM outperforms existing methods in rock particle segmentation accuracy while showing excellent generalization across different image types such as CT scans and core photographs.The proposed method enables full-sample,classified particle size analysis and quantitative characterization of parameters like roundness,advancing reservoir evaluation towards more precise,quantitative,intuitive,and comprehensive development.